Pos

Langkah-Langkah Membuat Peta Dasar Skala Besar

Dalam kaitannya dengan pembangunan nasional berkelanjutan, peta dasar skala besar sangat diperlukan untuk mendukung dalam pengambilan kebijakan baik perencanaan tata ruang maupun kebijakan lainnya. Saat ini, ketersediaan peta dasar skala besar masih minim. Berdasarkan hal tersebut, peta dasar skala besar menjadi skala prioritas pemerintah khususnya dalam perencanaan tata ruang di setiap wilayah Indonesia. Apa itu peta dasar? Apa kegunaan peta skala besar? Yuk kita simak.

Mengenal Peta Dasar

Dalam suatu rencana pembangunan, data spasial memiliki peranan yang sangat penting. Adapun peranan penting data spasial adalah sebagai data teknis dalam operasional di lapangan (Humas UGM, 2009). Data spasial sendiri merupakan data yang menyimpan komponen-komponen permukaan bumi, seperti jalan, pemukiman, jenis penggunaan.  Bentuk visual dari data spasial adalah peta. Pengertian peta sendiri adalah gambaran permukaan bumi dengan skala tertentu, digambar pada bidang datar melalui sistem proyeksi tertentu (Prihandito, 1989). 

Berdasarkan Peraturan Pemerintah Republik Indonesia Nomor 8 Tahun 2013, Peta dasar merupakan peta yang menyajikan unsur-unsur alam dan atau buatan manusia, yang berada di permukaan bumi, digambarakan pada suatu bidang datar dengan skala, penomoran, proyeksi, dan georeferensi tertentu. Peta dasar digunakan sebagai acuan dalam pembuatan peta tematik yang digunakan dalam penyusunan peta rencana tata ruang sebagai bahan pertimbangan pengumpulan data dan Informasi penyusunan RDTR suatu daerah yang sesuai dengan ketelitian dan spesifikasi teknis yang meliputi kerincian, kelengkapan data dan atau informasi georeferensi dan tematik, skala, akurasi, format penyimpanan digital termasuk kode unsur, penyajian kartografis mencakup simbol, warna, arsiran dan notasi serta kelengkapan muatan peta. Peta dasar disajikan dalam beberapa kategori skala yaitu skala besar, skala sedang, dan skala kecil. Semakin besar skala pada peta, semakin rinci juga data yang akan didapatkan. 

Peta dasar menyajikan informasi geospasial atau objek-objek di permukaan bumi yang dapat diidentifikasi langsung. Informasi yang tercakup di peta dasar meliputi garis pantai; unsur perairan seperti sungai, danau dan waduk; unsur hipsografi atau bentuk permukaan bumi seperti kontur dan titik ketinggian; batas wilayah yakni batas administrasi dan batas negara; nama geografis (nama dari objek di permukaan bumi) seperti nama jalan, nama sungai dan nama gedung. Kemudian, unsur transportasi seperti jalan, jembatan, terminal dan bandara, dan utilitas seperti jaringan listrik, jaringan pipa minyak dan gas; unsur bangunan dan fasilitas umum seperti gedung, rumah, sekolah, rumah ibadah, rumah sakit, serta unsur penutup lahan seperti sawah, hutan, kebun dan pemukiman.

Peta Dasar Skala Besar 

Menurut Prahasta (2001) peta berdasarkan skalanya yaitu: peta skala besar, peta skala sedang dan peta skala kecil. Dalam Peraturan Badan Informasi Geospasial Nomor 1 Tahun 2020 Tentang Standar Pengumpulan Data Geospasial Dasar Untuk Pembuatan Peta Dasar Skala Besar. Skala peta yang termasuk dalam peta skala besar adalah 1 : 1.000, 1: 2.500, 1: 5.000, 1:10.000. Pengumpulan data geospasial dasar untuk pembuatan peta skala besar dilakukan dengan:

  1. Survei pemotretan udara menggunakan kamera metrik
  2. Survei pemotretan udara menggunakan kamera non-metrik
  3. Survei LiDAR (Light Detection and Ranging) 

Kegunaan Peta Skala 1 : 1.000

Peta dasar dengan skala 1 : 1000 sangat berguna untuk pengambilan kebijakan, Adapun beberapa kegunaan lainnya adalah:

  1. Untuk bahan pertimbangan pengumpulan data dan Informasi penyusunan RDTR
  2. Sebagai masterplan kawasan/ perumahan
  3. Untuk bahan pertimbangan dalam penyusunan RTBL
  4. Untuk peta kebencanaan
  5. Untuk peta infrastruktur
  6. Peta batas administrasi RT/RW

Pembuatan peta skala 1 : 1000 yang akan dibahas menggunakan sumber data foto udara dan Light Detection And Ranging (LiDAR). Foto udara digunakan untuk mendapatkan nilai koordinat X dan Y dalam peta, sedangkan LiDAR digunakan untuk mendapatkan nilai koordinat Z (ketinggian) dalam peta. Metode survei pemotretan udara menggunakan kamera non-metrik.

Langkah-Langkah Pembuatan Peta Skala 1 : 1000

Langkah-langkah pembuatan peta skala 1 : 1000 ini beracuan pada Lampiran II dan Lampiran III Peraturan Badan Informasi Geospasial Nomor 1 tahun 2020 tentang Standar Pengumpulan Data Geospasial Dasar Untuk Pembuatan Peta Dasar Skala Besar.

  1. Persiapan

Pada tahap persiapan akan dilakukan penyusunan detail pelaksanaan pekerjaan sebagai acuan teknis dalam pelaksanaan pekerjaan. Detail pelaksanaan pekerjaan akan mencakup: 1.Pendahuluan: latar belakang, maksud dan tujuan, volume pekerjaan, dan hasil pekerjaan yang akan diserahkan. 2. Pelaksanaan pekerjaan, 3. Peralatan yang digunakan. 4. Spesifikasi teknis yang harus dipenuhi, 5. Melakukan penyiapan struktur folder untuk masing-masing data yang dihasilkan. 6. Pengurusan perizinan, 7. Pengurusan petugas pengawas (security officer) yang dikeluarkan oleh TNI AU, 8. Pembuatan peta rencana jalur terbang. 9. Pembuatan peta rencana distribusi titik control (GCP) dan titik uji (ICP). 10. Pemeriksaan kesiapan alat yang akan digunakan yaitu GNSS geodetik, sistem kamera udara, dan LiDAR. 11. Memenuhi persyaratan QC Persiapan Akuisisi Data.

  1. Pengukuran Ground Control Point (GCP) dan Independent Check Point (ICP)

Titik kontrol tanah terdiri atas Ground Control Point (GCP) dan Independent Check Point (ICP). GCP dan ICP dibutuhkan untuk pengolahan dan pengecekan data foto udara dan LiDAR. Sebelum melakukan pengambilan data foto udara dan LiDAR, titik premark GCP dan ICP harus sudah terpasang dan tersebar di keseluruhan area pengukuran. Hal ini bertujuan agar titik GCP dan ICP yang terpasang di tanah terekam pada hasil foto udara yang diambil, yang selanjutnya akan digunakan pada proses block bundle adjustment. 

  1. Kalibrasi Boresight

Kalibrasi boresight dilakukan dari udara dengan mengambil objek topografi yang variatif dalam formasi tertentu. Hal ini bertujuan untuk mendapatkan parameter penggabung data antar strip baik line utama dan crossline. Hasil kalibrasi boresight akan dianalisis untuk mengetahui kualitas dari parameter data yang diinput pada saat post processing seperti kualitas data pengukuran lever arm, pengukuran ground basestation dan data hasil kalibrasi kamera. Jika kualitas data sudah memenuhi standar, maka dilanjutkan pelaksanaan pemotretan udara di area lokasi pekerjaan. Setelah tahapan tersebut, diperlukan kalibrasi kamera udara digital dan UAV LiDAR

Gambar 14. Contoh Boresight Calibration.
  1. Akuisisi Data Foto Udara
    • Perencanaan Jalur Terbang Foto Udara, Pembuatan rencana jalur terbang dilakukan sebelum melakukan kegiatan survei pemotretan udara dengan menggunakan perangkat lunak rencana jalur terbang.
    • Pelaksanaan Akuisisi Data Foto Udara, Tahapan survei pemotretan udara digital dilakukan jika kalibrasi boresight dan lever arm telah dilakukan. Survei pemotretan udara harus dilaksanakan dengan mengacu kepada rencana jalur terbang yang sudah dibuat. 
    • Pengolahan Data Foto Udara, Pengolahan Data Foto Udara secara umum yaitu: pemeriksaan data, pengolahan trajectory, triangulasi udara, pembentukan point cloud, ortorektifikasi dan penggabnungan (mozaik) foto.
    • Uji Akurasi Horizontal Data Foto Udara, Uji akurasi dilakukan untuk mendapatkan nilai ketelitian horizontal (CE90) dari data orto mozaik hasil pengolahan data foto udara. Pengujian dilakukan dengan membandingkan nilai X dan Y dari data orto mozaik terhadap nilai X dan Y dari koordinat ICP. 
  1. Akuisisi Data LiDAR
    1. Perencanaan Jalur Terbang LiDAR, Pembuatan rencana jalur terbang dilakukan sebelum melakukan kegiatan survei LiDAR dengan menggunakan perangkat lunak rencana jalur terbang.
    2. Pelaksanaan Akuisisi Data LiDAR, Tahapan survei LiDAR dilakukan jika kalibrasi bore sight dan lever arm telah dilakukan. Survei pemotretan udara harus dilaksanakan dengan mengacu kepada rencana jalur terbang yang sudah dibuat.
    3. Pengolahan Data LiDAR, Pengolahan data LiDAR dimulai dari proses transfer data dari sensor sistem LiDAR. Proses perekaman data ketika akuisisi data ini dilakukan secara otomatis pada komputer dan hardisk yang terpasang bersamaan dengan instalasi alat LiDAR. Proses selanjutnya yaitu pengolahan raw data (pre-processing). Setelah didapatkan format point cloud dalam bentuk *.LAS, selanjutnya akan dilakukan proses untuk pembentukan DTM, DSM, dan kontur.
Gambar 19. Digital Surface Model (DSM). (PT.KHS)
Gambar 20. Intensity Image Raster dari data LiDAR. (PT. KHS)
Gambar 21. Digital Terrain Model (DTM). (PT. KHS)
Gambar 22. Contoh hasil kontur interval 0,5 m. (PT. KHS)
  1. Uji Akurasi Vertikal Data LiDAR

Uji akurasi dilakukan untuk mendapatkan nilai ketelitian vertikal (LE90) dari data ground LiDAR. Pengujian dilakukan dengan membandingkan ketinggian dari data ground LiDAR terhadap nilai Z dari koordinat ICP. 

  1. Digitasi dan Pembuatan Peta

Digitasi merupakan metode yang biasa dilakukan untuk mengubah data raster dari citra menjadi data vektor. Proses ini dilakukan dengan menginterpretasikan realitas dengan memakai model real world dan model data disebut juga proses pemodelan data. Pemodelan yang dilakukan adalah dari objek-objek yang terlihat dalam citra direpresentasikan dalam bentuk unsur geografis (berbasiskan koordinat) yaitu titik, garis, dan poligon. Selain dalam bentuk grafis, data juga dapat direpresentasikan secara tekstual atau biasa disebut data atribut. Data spasial dan data atribut kemudian disebut juga data Sistem Informasi Geografis (SIG).

Gambar 23. Ilustrasi Pemodelan Unsur.

Setelah digitasi semua unsur peta dasar telah diselesaikan, maka dilanjutkan dengan proses topologi. Setelah proses topologi selesai, proses selanjutnya yaitu pengisian atribut peta dasar. 

  1. Layouting Peta

Layout peta memiliki skala 1:1000 yang disajikan dengan kaidah kartografi yang benar meliputi sistem koordinat, dan informasi tepi yang terdiri atas judul, arah mata, angin, skala, legenda, penerbit/pembuat, dan metadata.

PT.KHS dapat memberikan solusi dalam pembuatan Peta Skala Besar untuk kebutuhan perusahaan anda. Selain sudah berpengalaman, PT.KHS juga menawarkan hasil peta kualitas tinggi, akurat, dan cepat namun dengan harga yang bersahabat. PT.KHS juga didukung dengan pilot yang handal dan bersertifikat sehingga anda tidak perlu khawatir terkait hasil dan keamanan saat proses survei pemetaan. Tunggu apa lagi? Silahkan hubungi kami, PT. Kreasi Handal Selaras yang dapat memenuhi kebutuhan pemetaan perusahaan anda.  

Untuk informasi lebih lanjut tentang Jasa Survei dan Pemetaan, silakan hubungi kami. Paket informasi lengkap dapat disediakan berdasarkan permintaan.

REFERENSI

  1. Bramanto, Brian & Kosasih Prijatna. 2022. Urgensi Peta Dasar Skala Besar. https://mediaindonesia.com/humaniora/478096/urgensi-peta-dasar-skala-besar. Diakses 6 Desember 2022.
  2. Mutiarasari, Wahyu Marta. dkk. 2018. Penyajian Peta Skala Besar Di Lahan Field Research Center (Frc) Sekolah Vokasi. Jurnal Geodesi dan Geomatika (ELIPSOIDA). Vol 01 No. 02. (64-70).
  3. Hartini, Tike Aprilia dan Annabel Noor Asyah. 2020. Apa itu Skala Peta?. https://www.handalselaras.com/apa-itu-skala-peta/. Diakses 6 Desember 2022.
  4. Puspita, Ratna. 2019. BIG: Perlu Percepatan Penyediaan Peta Dasar Skala Besar. https://www.republika.co.id/berita/px0aa9428/big-perlu-percepatan-penyediaan-peta-dasar-skala-besar. Diakses 6 Desember 2022.
  5. SNI 8202:2019 Tentang Ketelitian Peta Dasar. Badan Standardisasi Nasional.
  6. Peraturan Badan Informasi Geospasial Nomor 1 tahun 2020 tentang Standar Pengumpulan Data Geospasial Dasar Untuk Pembuatan Peta Dasar Skala Besar

Teknologi UAV Untuk Penanganan Pasca Bencana

Oleh: Arszandi Pratama, S.T, M.Sc, Rabby Awalludin S.T, Tike Aprillia S.T, dan Dandy Muhamad Fadilah, S.T

Kemajuan teknologi yang sangat pesat terutama UAV dalam beberapa tahun terakhir membuat banyak inovasi terkini dalam upaya manajemen bencana di Indonesia. Dengan teknologi UAV, yang relatif lebih terjangkau dan mudah digunakan diharapkan mampu membantu dalam kajian manajemen bencana khususnya pada saat pasca bencana. Dalam artikel ini, anda akan mengetahui mengenai pemanfaatan UAV pada saat pasca bencana, alasan mengapa UAV lebih sering digunakan, dan manfaat penggunaannya. Yuk disimak! semoga dapat bermanfaat.

Teknologi UAV Untuk Kebencanaan

Sumber: PT.KHS

UAV (Unmanned Aerial Vehicle) atau yang lebih dikenal dengan drone merupakan alat yang efektif untuk melakukan pemetaan foto udara. Saat ini, penggunaan UAV meningkat karena keuntungan pada biaya yang relatif murah. UAV dapat dimanfaatkan untuk kegiatan inspeksi, pengawasan, pengintaian, dan pemetaan. Teknologi komputer dan teknologi pengolahan gambar digital telah dikembangkan dan pengembangan ini dapat menyediakan hingga melakukan proses ekstraksi baik secara otomatis atau semi-otomatis (Solikhin, 2016).

Bencana alam maupun bencana yang disebabkan oleh manusia yang terjadi akan meninggalkan kehancuran pada lingkungan terdampak dan sekitarnya. Kondisi area terdampak bencana cenderung sulit diakses oleh petugas tanggap bencana. Sementara banyak hal yang harus segera dilakukan oleh petugas tersebut, seperti menyisir seluruh area, memetakan wilayah dan jalur alternatif, serta mendistribusikan berbagai bantuan untuk korban. Pekerjaan tersebut terkadang sangat sulit dilakukan apalagi jika area terdampak bencananya tergolong sangat luas. Oleh karena itu, hadirlah UAV yang mengambil alih pekerjaan tersebut sehingga mempercepat penanganan pasca bencana. 

Pada saat keadaan pasca bencana, sulit untuk mengetahui informasi penting baik dikarenakan medan yang sulit ditempuh, keadaan yang tidak terkendali, sampai keadaan panik akibat korban luka dan korban jiwa. Dalam kondisi kurang terkendali tersebut, dibutuhkan data dan informasi yang cepat dan tepat untuk dapat membantu korban bencana. Data-data yang dibutuhkan adalah:

  1. Kondisi umum area bencana 
  2. Mengidentifikasi zona aman dan bahaya
  3. Peta detail dan akurat
  4. Data banyaknya korban terdampak
  5. Informasi infrastruktur yang rusak.

Mengapa Memilih Menggunakan UAV?

Terdapat beberapa keuntungan dalam penggunaan UAV pada saat pasca bencana:

  1. Kecepatan dan ketinggian dapat diatur sesuai dengan kebutuhan.
  2. Menghasilkan data dengan resolusi sangat tinggi, dan hanya kemungkinan kecil tertutup awan (apabila terbang sangat tinggi) jika dibandingkan dengan satelit.
  3. Pengoperasian secara otomatis atau manual.
  4. Dapat menggunakan berbagai sensor sesuai dengan kebutuhan.
  5. Biaya yang dibutuhkan relatif lebih kecil.
  6. Dapat menjangkau daerah yang luas dan daerah yang sulit.
  7. Lebih fleksibel, efektif, dan efesien dalam melakukan survei. Saat melakukan kaji cepat tidak perlu memasuki kawasan rawan bencana yang membahayakan jiwa petugas. 
  8. Mampu memberikan informasi berupa gambar dan video yang dapat mendukung laporan. 
  9. Data yang diperoleh dapat digunakan ke dalam peta sebagai sarana pendukung dalam penyusunan rencana operasi pada masa tanggap darurat agar lebih efektif. 
  10. Melakukan assesmen lebih cepat.

Adapun tujuan penggunaan UAV salah satunya adalah menghasilkan citra orthophoto dan Digital Elevation Model (DEM) resolusi tinggi yang diharapkan mampu memberikan gambaran dan data teknis bencana secara cepat dan akurat.

Citra Orthophoto

Sumber: PT. KHS

Beberapa Fungsi UAV Pada Saat Pasca Bencana

  1. Penyisiran Wilayah dan Penyelamatan

Drone sebagai pesawat tanpa awak yang dilengkapi kamera dimanfaatkan untuk melakukan penyisiran wilayah terdampak bencana yang luas. Drone dapat melakukan penyisiran dengan lebih cepat karena kemampuan terbangnya yang stabil di segala keadaan. Saat menyisir wilayah, drone juga akan sekaligus menandai lokasi korban serta mengidentifikasi bagian wilayah yang paling gawat kondisinya. Sehingga selanjutnya upaya penyelamatan dapat segera dilakukan dengan lebih terfokus dan cepat.

  1. Pemantauan Keselamatan Petugas

Seperti sudah disebutkan sebelumnya, bencana akan mengakibatkan sarana infrastruktur mengalami gangguan dan kerusakan. Keadaan lingkungan terdampak bencana sangat tidak stabil, kerap terdapat bangunan yang beresiko runtuh tiba-tiba, pepohonan yang akarnya sudah tidak kuat, kabel listrik yang putus, atau genangan banjir yang tidak terukur.

Kondisi-kondisi tersebut bisa saja mencelakai petugas tanggap bencana dan menambah korban lagi. Di sinilah drone berperan memberikan pemantauan jarak jauh untuk meningkatkan keselamatan petugas dan orang-orang di sekitar. Hasil pemantauan drone akan dijadikan acuan petugas untuk menentukan cara terbaik mendekati wilayah bencana.

  1. Menilai Kerugian Aset

Dalam sebuah bencana, petugas biasanya memiliki dua tugas penting yaitu evakuasi korban manusia dan assessment aset terdampak. Assessment adalah proses penilaian kerugian aset berdasarkan kerusakan yang terjadi pada fasilitas publik. Penilaian ini diperlukan agar pemerintah dapat dengan segera menganggarkan dana untuk memulihkan wilayah tersebut.

Drone membantu pekerjaan tersebut dengan menganalisa wilayah bencana yang luas untuk kemudian mengidentifikasi area atau infrastruktur yang kondisinya parah dan membutuhkan penanganan segera. Drone menampilkan data tersebut dalam bentuk foto

  1. Pemetaan 3D Area Bencana

Untuk mempercepat proses evakuasi dan distribusi bantuan ke wilayah darurat, peta 3D atau pencitraan visual sangat dibutuhkan. Pesawat besar dengan awak bisa melakukan pemetaan ini, namun biayanya terlalu mahal. Sedangkan pencitraan satelit memiliki resolusi gambar yang kurang bagus. Keduanya sama-sama membutuhkan waktu lama untuk memetakan lokasi, sehingga drone adalah pilihan yang paling tepat untuk situasi ini.

Drone secara cepat dapat menghasilkan pemetaan 3D dengan resolusi yang tinggi sehingga tiap titik kerusakan dapat diidentifikasi. Data tersebut akan otomatis diunggah secara real-time. Drone menghasilkan peta dengan model 3D dengan bantuan sofware khusus pengolah gambar yang terhubung dengannya. Pemetaan 3D drone ini sudah pernah diaplikasikan dalam penanggulangan pasca gempa Nepal pada tahun 2015 lalu.

Sumber: PT. KHS

Dalam sistem manajemen bencana, Penanganan pasca bencana merupakan salah satu kunci untuk dapat secara cepat dan tepat menangani korban dan dampak dari bencana yang telah berlangsung. Dengan penanganan yang tepat dan cepat akan dapat membantu pemerintah dalam melakukan kajian penanganan bencana baik berupa pemberian bantuan, penyisiran wilayah, ataupun pemantauan korban jiwa. Dengan teknologi UAV, hal tersebut dapat dilakukan dengan cepat. Diharapkan penanganan bencana di seluruh wilayah Indonesia dapat terorganisir dengan baik dan seluruh elemen masyarakat serta pemerintah dapat bersiap siaga dalam menghadapi bencana termasuk dalam mitigasi bencana.

REFERENSI

  1. Allawiyah, Mutia. 2022. Drone: Pesawat Terbang Tanpa Awak Untuk Kebencanaan. https://siagabencana.com/all/post/drone-pesawat-terbang-tanpa-awak-untuk-kebencanaan. Diakses pada 28 November 2022.
  2. 2016. BNPB Akan Manfaatkan Drone Untuk Penanggulangan Bencana
    https://mediaindonesia.com/humaniora/70670/bnpb-akan-manfaatkan-drone-untuk-penanggulangan-bencanaDrone. Diakses pada 28 November 2022.
  3. Fibriati, Romana Dwi. 2020. 5 Peran Penting Drone dalam Penanggulangan Bencana https://www.builder.id/drone-penanggulangan-bencana/. Diakses pada 28 November 2022.
  4. Kristiawan, Yohandi. dkk. 2017. Aplikasi UAV Drone Untuk Penanggulangan Cepat Potensi Aliran Bahan Rombakan (Banjir Bandang) Studi Kasus Di Desa Lebakwangi, Kecamatan Arjasari, Kabupaten Bandung. Prosiding, Seminar Nasional Kebumian. Pusat Vulkanologi Dan Mitigasi Bencana Geologi.
  5. Nugroho Wisnu, 2019. Pemanfaatan Drone untuk Membantu Pemulihan Gempa dan Tsunami di Palu. https://infokomputer.grid.id/read/121712212/pemanfaatan-drone-untuk-membantu-pemulihan-gempa-dan-tsunami-di-palu Diakses pada 28 November 2022.
  6. Ramadhani, Yoniar Hufan. 2016. Pemanfaatan UAV Untuk Pemetaan Tematik Kebencanaan. Seminar Pemanfaatan UAV Untuk Penanggulan Bencana. Badan Informasi Geospasial.
  7. Setyorini, Virna, P. 2020. Penggunaan Drone Untuk Kebencanaan Libatkan Swasta Dan Komunitas. https://www.antaranews.com/berita/1753473/penggunaan-drone-untuk-kebencanaan-libatkan-swasta-dan-komunitas. Diakses pada 28 November 2022.
  8. Zona Spasial. 2018. 4 Fungsi Drone dalam Penanganan Pasca Bencana. https://zonaspasial.com/tag/foto-udara/. Diakses pada 28 November 2022.

KHS Berperan Mendukung Transisi Energi Berkelanjutan

Oleh: Arszandi Pratama, S.T., M.Sc., Tike Aprillia S.T., dan Dandy Muhamad Fadilah, S.T.

Pembahasan Energy Transitions Working Group (ETWG)

Kegiatan Konferensi Tingkat Tinggi (KTT) G20 telah selesai diadakan. Sebelum kegiatan tersebut berakhir, setahun belakangan ini telah banyak dilakukan rangkaian kegiatan pertemuan-pertemuan pendahulu setidaknya sebanyak 438 event dan side event telah dilakukan di 25 kota Indonesia. Sustainable energy transition atau transisi energi berkelanjutan menjadi salah satu isu prioritas pada Presidensi G20 Indonesia tahun 2022, di samping dua topik lainnya yakni Sistem Kesehatan Dunia serta Transformasi Ekonomi dan Digital.

Dalam pembahasan transisi energi berkelanjutan, terdapat 3 pilar yaitu: Pertama, energy accessibility atau akses energi yang terjangkau, berkelanjutan, dan dapat diandalkan. Tujuannya, untuk meningkatkan kerja sama internasional dalam memfasilitasi akses ke penelitian dan teknologi bersih. Kedua, smart and clean energy technology, yaitu mendorong implementasi teknologi pintar dan bersih, baik dalam konteks efisiensi energi, pengurangan emisi, maupun pengembangan energi terbarukan.  Ketiga, advancing energy financing, yaitu pembiayaan untuk mendukung dua poin sebelumnya.

Dalam Forum transisi energi G20 yang ke-3, The 3rd Energy Transitions Working Group (ETWG), di Nusa Dua Bali, menjadi gelaran ketiga diskusi terkait transisi energi pada Presidensi G20 Indonesia tahun 2022. Dalam forum tersebut, anggota G20 intensif membahas tiga pilar utama transisi energi untuk percepatan transisi energi dan pencapaian tujuan global, baik Sustainable Development Goal 7 (SDG7) maupun pencapaian target pengendalian perubahan iklim. Dengan tiga fokus tersebut, G20 diharapkan dapat mencapai kesepakatan bersama dalam mempercepat transisi energi global, sekaligus memperkuat sistem energi global yang berkelanjutan dengan dan tanpa mengenyampingkan nilai-nilai keadilan dan kesejahteraaan.

Pemerintah Indonesia mengajak negara-negara yang tergabung dalam G20 untuk mencapai kesepakatan global dengan mempercepat program transisi energi. Indonesia resmi menginisiasi dan meluncurkan Transisi Energi G20 guna menjembatani dan mendorong negara-negara maju, serta negara-negara berkembang agar mempercepat peralihan energi fosil ke energi bersih. 

Transisi energi merupakan proses panjang yang harus dilakukan oleh negara-negara di dunia untuk menekan emisi karbon yang dapat menyebabkan perubahan iklim. Kesepakatan dalam transisi energi bertujuan untuk menuju ke titik yang sama yaitu pemanfaatan energi bersih yang terus meningkat. Program Transisi Energi bersih ini dibuat dalam satu sistem energi global yang terus menerus berkelanjutan. Transisi Energi G20 tentunya menjadi daya ungkit untuk memperkuat sistem energi global berkelanjutan tersebut. 

Data Menunjukan bahwa negara-negara anggota G20 menyumbang paling tidak sekitar 75% dari permintaan energi global. Oleh karena itu, negara-negara G20 memiliki sebuah tanggung jawab besar dan harus memiliki langkah strategis dalam mendorong pemanfaatan energi bersih. Proses transisi ke energi karbon yang lebih rendah menjadi tantangan yang tidak mudah. Beradaptasi dengan era rendah karbon tentu saja berdampak sangat luas. Adaptasi tersebut tidak hanya menyangkut strategi investasi dan permodalan, namun juga terkait erat dengan budaya dan kebiasaan yang ada. Dalam konteks transisi energi lebih dari 69 negara diharapkan secara masif melakukan dekarbonisasi yang bersifat universal, terencana, terukur dalam suatu langkah yang nyata.

Ke depan, pemerintah tengah melakukan pengurangan penggunaan batubara sebagai sumber energi dengan menggunakan teknologi CCS/CCUS (Carbon Capture, Utilizaton and Storage), pengembangan Dimethyl Ether (DME) pengganti elpiji serta peningkatakan nilai tambah mineral melalui hilirisasi di dalam negeri. Pada periode transisi energi, energi fosil masih memiliki peran penting untuk dikembangkan sebelum yang lebih bersih tersedia.

Sumber: https://www.esdm.go.id/en/media-center/news-archives/inovasi-teknologi-pemanfaatan-batubara-dukung-tercapainya-transisi-energ

Langkah-Langkah Menuju Transisi Energi Nasional

Salah satu dari langkah transisi energi nasional adalah melalui pengurangan emisi C02 pada beberapa sektor dan aktivitas ekonomi yang sangat penting. Dua sektor utama yang sangat mempengaruhi adalah sektor energi dan sektor kehutanan/penggunaan lahan. Penguatan-penguatan dan kendali kebijakan yang mendukung transisi energi yaitu:

  1. RUPTL tersebut harus selalu dipastikan selalu on the track. Dimana dalam RUPTL total pembangkit EBT yang akan dibangun dalam 10 tahun ke depan mencapai 20.923 megawatt (MW). Pembangkit listrik tenaga air menjadi yang paling dominan dengan 9.272 MW, disusul oleh pembangkit listrik tenaga panas bumi (PLTP) 3.355 MW, dan pembangkit listrik tenaga surya 4.680 MW.  
  2. Kampanye terhadap perubahan budaya, cara pandang, serta kebiasaan di masyarakat yang terus di dengungkan, agar efek dari perubahan iklim akan mempengaruhi setiap orang meskipun dalam porsi yang berbeda-beda. Dengan adanya kemudahan penyebaran informasi, kesadaran akan penyebab perubahan iklim dan upaya menghindari atau mengatasi implikasinya semakin dapat diakses oleh publik sehingga bagi banyak orang transisi menuju energi terbarukan sangat penting untuk mendukung pertumbuhan yang rendah karbon.
  3. Pelaku dunia usaha dan pelaku bisnis, pelaku industri, serta UMKM dianggap sudah selayaknya didorong untuk memanfaatkan energi baru terbarukan, guna mempercepat pertumbuhan green economy atau ekonomi hijau di Indonesia.
  4. Pemerintah Daerah dan legislatif (DPRD) punya andil yang kuat dan signifikan untuk melakukan langkah langkah konkret terhadap kebijakan yang mendukung energi bersih. Implementasi instrument-instrumen kebijakan untuk mendukung akselerasi transisi di daerah memiliki daya ungkit yang kuat terhadap penerapan energi hijau.
  5. Kebijakan fiskal berupa instrumen Nilai Ekonomi Karbon (NEK), di mana regulasi telah di terbitkan yaitu Undang-Undang Nomor 7 Tahun 2021 tentang Harmonisasi Peraturan Perpajakan – Pasal 13 Pemberlakuan Pajak karbon, harus secara tegas ditegakkan. Salah satu klausulnya berlaku pada 1 April 2022, yang pertama kali dikenakan terhadap badan yang bergerak di bidang pembangkit listrik tenaga uap batubara dengan skema cap dan tax yang searah dengan implementasi pasar karbon yang sudah mulai berjalan di sektor PLTU batubara.

Langkah dan strategi di atas merupakan instrumen yang tengah dijalankan oleh pemerintah, dalam kerangka melakukan percepatan terhadap proses transisi energi. Poin penting dalam transisi energi adalah memperluas penggunaan energi terbarukan dengan tetap memperhatikan kecukupan energi untuk mendukung beragam kegiatan perekonomian masyarakat.

Peran KHS dalam Mendukung Transisi Energi 

Panas bumi adalah sumber energi panas yang terkandung di dalam air panas, uap air, serta batuan bersama mineral ikutan dan gas lainnya yang secara genetik tidak dapat dipisahkan dalam suatu sistem panas bumi. Sementara energi panas bumi merupakan energi yang bersumber dari panas yang terkandung dalam perut bumi dan pada umumnya berasosiasi dengan keberadaan gunung api. Sebagaimana ditetapkan dalam Undang-Undang RI Nomor 21 Tahun 2017 tentang panas bumi merupakan energi ramah lingkungan yang potensinya besar dan pemanfaatannya belum optimal sehingga perlu didorong dan ditingkatkan secara terencana dan terintegrasi guna mengurangi ketergantungan terhadap energi fosil.

Energi panas bumi bersifat ramah terhadap lingkungan, tidak hanya dalam aspek produksi tetapi juga aspek penggunaan, sehingga dampaknya berperan positif pada setiap sumber daya. Pada saat menjalankan proses pengembangan dan pembuatan, tenaga panas bumi sepenuhnya bebas dari emisi. Tidak ada karbon yang digunakan untuk produksi, kemudian seluruh prosedur juga telah bebas dari sulfur yang umumnya telah dibuang dari proses lainnya yang dilakukan. Penggunaan energi panas bumi memang tidak akan menimbulkan pencemaran terhadap lingkungan. Oleh karenanya efek dari pemanasan global yang disebabkan oleh emisi dari bahan-bahan minyak akan berkurang. 

Dalam perjalanannya, PT.KHS berpengalaman menangani proses pengambilan data pengembangan PLTP. Tujuannya yaitu untuk mendapatkan data dan informasi geospasial dalam mendukung tahapan eksplorasi panas bumi baik dari sisi geosains ataupun penyiapan infrastruktur pengeboran. Hal tersebut dilakukan dengan menggunakan Survei LiDAR (Light Detection and Ranging) dan foto udara. Dari proyek tersebut kami terus berupaya untuk ikut serta memberikan kontribusi besar dalam implementasi transisi energi di Indonesia.

Gambar Drone DJI Matrice 300. Salah satu teknologi UAV yang digunakan oleh PT.KHS untuk mendukung proyek transisi energi pemerintah.
Sumber: PT. Kreasi Handal Selaras
Gambar Peta Kontur yang merupakan salah satu hasil dari teknologi UAV yang digunakan PT.KHS untuk mendukung proyek transisi energi pemerintah.
Sumber: PT. Kreasi Handal Selaras
Gambar Point Cloud yang merupakan salah satu hasil dari teknologi UAV yang digunakan PT.KHS untuk mendukung proyek transisi energi pemerintah.
Sumber: PT. Kreasi Handal Selaras

Dengan pengalaman tersebut, kami terus berupaya untuk terus meningkatkan SDM dan penggunaan teknologi canggih dalam mendukung transisi energi di Indonesia. Dengan adanya Presidensi G20 Indonesia, kami harap transisi energi yang menjadi bagian dari salah satu pilar pembahasan G20 ini dapat diwujudkan sehingga dapat mengurangi penggunaan bahan bakar fosil.

KREASI HANDAL SELARAS merupakan jasa konsultan yang bergerak di bidang SURVEY dan MAPPING menawarkan teknologi terbaru yang bisa menjawab kebutuhan survei dan pemetaan perusahaan anda. Dengan teknologi UAV yang canggih serta tenaga ahli yang handal, kami siap membantu anda. Untuk informasi lebih lanjut silakan hubungi kami. Paket informasi lengkap dapat disediakan berdasarkan permintaan.

REFERENSI

  1. Kementerian Energi Dan Sumber Daya Mineral Republik Indonesia. 2022. Masa Transisi Energi Menuju Net Zero Emission. Siaran Pers Nomor: 79.Pers/04/SJI/2022. Diakses pada 11 November 2022.
  2. Kementerian Energi Dan Sumber Daya Mineral Republik Indonesia. 2022. Urgensi Transisi Energi dalam Presidensi G20 Indonesia. Siaran Pers Nomor: 79.Pers/04/SJI/2022. Diakses pada 11 November 2022.
  3. Damayanti, Aulia. 2022. Lengkap! Maudy Ayunda Bicara 3 Isu Transisi Energi G20, Apa Saja? dalam https://finance.detik.com/energi/d-6076153/lengkap-maudy-ayunda-bicara-3-isu-transisi-energi-g20-apa-saja diakses pada 11 November 2022.
  4. Setyarto, Aries dan Widyaiswara. 2022. Langkah Menuju Transisi Energi dalam https://ppsdmaparatur.esdm.go.id/berita/langkah-menuju-transisi-energi diakses pada 11 November 2022.
  5. Novrizaldi. 2022. Ini Manfaat KTT G20 Bagi Kehidupan Masyarakat dalam https://www.kemenkopmk.go.id/ini-manfaat-ktt-g20-bagi-kehidupan-masyarakat diakses pada 11 November 2022.
  6. Wardani Rakhma. 2017. dalam https://ebtke.esdm.go.id/post/2017/08/22/1733/energi.panas.bumi.ramah.terhadap.lingkungan.sekitar. diakses pada 14 November 2022.

Thermal Imaging Surveys Menggunakan UAV

Oleh: Arszandi Pratama, S.T, M.Sc, Rabby Awalludin S.T, Tike Aprillia S.T, dan Dandy Muhamad Fadilah, S.T

Tim Survei PT.KHS

Kebutuhan survei thermal dewasa ini semakin dibutuhkan untuk segala aktivitas kegiatan proyek di seluruh bidang industri. Dari mulai proyek bangunan, pengecekan peralatan mekanis perusahaan hingga survei saluran listrik tegangan tinggi. Hal tersebut dilakukan untuk proses pembangunan, strategi pengecekan, sampai mencari sumber permasalahan agar dapat mencegah kerusakan sejak dini. Dengan kecanggihan teknologi saat ini, penggunaan sensor thermal sangat membantu menyelesaikan pekerjaan tersebut. survei thermal dapat dilakukan dengan berbagai alat, namun penggunaan UAV untuk survei thermal menjadi sangat populer saat ini. Dalam artikel ini, kamu akan mengetahui beberapa hal terkait survei thermal menggunakan UAV, keunggulan-keunggulan penggunaan UAV untuk survei thermal, dan lain sebagainya. 

Survei Thermal Menggunakan UAV

Setiap benda dapat memancarkan energi panas atau energi inframerah. Untuk dapat mendeteksi dan mengukur energi inframerah pada sebuah objek, maka dibutuhkannya thermal camera. Alat ini merupakan sebuah kamera yang dapat mengubah radiasi inframerah menjadi cahaya yang tampak. Penggunaan thermal kamera sangat dibutuhkan untuk berbagai kegiatan. 

Survei thermal dengan menggunakan UAV memungkinkan untuk melakukan survei terperinci dengan tujuan mendapatkan anomali suhu pada suatu objek survei dari sudut yang tidak bisa dilihat dan dijangkau oleh manusia. Survei pencitraan thermal melibatkan penggunaan kamera pencitraan thermal untuk dapat menampilkan secara visual suhu permukaan suatu objek. Survei thermal biasanya diperlukan karena 3 alasan:

  1. Komisioning Peralatan/Bangunan Baru, thermal dapat digunakan untuk mengidentifikasi potensi kerusakan sedini mungkin; memungkinkan pekerjaan perbaikan dilakukan sebelum bangunan atau peralatan diserahkan kepada klien.
  2. Kegiatan Pemeliharaan, thermal dapat digunakan sebagai bagian dari pemeliharaan prediktif atau program pemantauan kondisi untuk mengidentifikasi kemungkinan buruk sehingga pekerjaan perbaikan dapat dijadwalkan di sekitar operasi bisnis untuk mencegah waktu henti produksi yang tidak direncanakan.
  3. Diagnosis Kesalahan, Jika peralatan dicurigai beroperasi dalam kondisi yang salah atau menunjukkan bukti kinerja yang buruk, thermal dapat digunakan untuk memberikan informasi lebih lanjut yang dapat membantu mendiagnosis masalah.

Cara Kerja Kamera Thermal

Thermal Camera adalah perangkat yang dapat menerjemahkan energi panas menjadi cahaya yang tampak untuk menganalisis objek atau pemandangan tertentu. Gambar yang dihasilkan dikenal sebagai termogram dan dianalisis melalui proses yang disebut termografi. Thermal camera juga merupakan salah satu alat canggih yang digunakan untuk memproses gambar yang diambil serta akan menampilkannya pada layar. Gambar-gambar ini dapat digunakan untuk diagnosis langsung atau diproses melalui perangkat lunak khusus untuk evaluasi, akurasi, dan keluaran laporan selanjutnya. Jenis kamera tersebut tidak memerlukan cahaya apa pun. kamera akan mengambil anomali suhu dan menciptakan gambar yang jelas menunjukkan objek dengan variasi suhu dari yang tinggi sampai rendah yang digambarkan dengan warna kuning, jingga atau merah. Pencitraan thermal juga tidak terpengaruh oleh kondisi cuaca dan memungkinkan untuk dapat melihat tanda thermal di bawah tanah dan tempat lain yang biasanya tidak terlihat oleh mata manusia.

Manfaat dan Kelebihan

Keuntungan dari penggunaan UAV dalam survei thermal adalah kemampuannya untuk terbang di malam hari. Reflektansi matahari memiliki dampak terbesar pada kualitas citra thermal dan kemampuan untuk membedakan target panas terhadap positif palsu yaitu batuan panas dan badan air. Dengan menghilangkan radiasi matahari sepenuhnya dan terbang di malam hari, akan menghasilkan citra dan data berkualitas sangat tinggi. Selain itu, keuntungan lainnya adalah: 1. Proses survei akan lebih efektif karena lebih aman dan memakan sedikit waktu; dan 2. Dapat menjangkau daerah/ tempat yang sulit dijangkau.

Jasa Survei Thermal oleh PT.KHS

Untuk mengikuti dan memahami kebutuhan client terkait dengan perkembangan kebutuhan survei thermal. Dalam proses perjalanannya, PT. KHS meningkatkan kompetensi pilot serta pemenuhan alat survei thermal menggunakan DJI Zenmuse H20T. Saat ini, PT.KHS sudah memiliki pengalaman untuk mengerjakan beberapa project survei thermal.

PT. KHS Menggunakan Teknologi Canggih Yaitu DJI Zenmuse H20T

Keunggulannya adalah:

  1. High Res-Grid Photo, Memungkinkan pengambilan beberapa gambar mendetail yang diambil dari satu titik yang sama secara otomatis.
  1. AI Spot – Check, Objek yang menarik dapat ditandai selama misi penerbangan, kemudian (melalui algoritme AI onboard) posisi target, sudut, framing, dan orientasi dapat direplikasi secara otomatis untuk misi mendatang.

Selain hasil survei yang lebih akurat, Penggunaan UAV dengan sensor H20T juga memiliki keuntungan untuk dapat terbang lebih rendah dan lebih dekat ke objek survei, sehingga menghasilkan gambar yang lebih detail dan waktu penyelesaian survei yang lebih cepat. PT.KHS juga didukung dengan pilot yang handal dan bersertifikat sehingga anda tidak perlu khawatir terkait hasil dan keamanan saat proses survei. Tunggu apa lagi? Silahkan hubungi kami, PT. Kreasi Handal Selaras yang dapat memenuhi kebutuhan survei thermal perusahaan anda.  

Untuk informasi lebih lanjut tentang Jasa Survei Thermal, silakan hubungi kami. Paket informasi lengkap dapat disediakan berdasarkan permintaan.

REFERENSI

  1. Geoscan. Thermal Imaging survey dalam https://www.geoscan.aero/en/services/teplovizor diakses pada 10 November 2022.
  2. https://skyrevolutions.co.uk/what-is-a-thermal-survey/ diakses pada 10 November 2022.
  3. Red Current. Thermographic surveys dalam https://www.red-current.com/thermal-imaging-surveys diakses pada 10 November 2022.
  4. Heli surveis. Thermal Imaging surveis. https://www.helisurveis.com.au/thermal-surveys diakses pada 10 November 2022.
  5. Sadiyah, Iis Halimatus. 2021. Mengenal Thermal Camera dan Cara Kerjanya. https://akurat.co/mengenal-thermal-camera-dan-cara-kerjanya?page=1 diakses pada 21 November 2022.
  6. Syaiful. 2020. Thermal Camera – Cara Kerja Infrared Camera. https://testingindonesia.co.id/thermal-camera-cara-kerja-infrared-camera/ diakses pada 21 November 2022.

Mengenal Survei Thermal

Oleh: Arszandi Pratama, S.T, M.Sc, Rabby Awalludin S.T, Tike Aprillia S.T, dan Dandy Muhamad Fadilah, S.T

Pernahkan terlintas bagaimana PLN dapat melakukan pengecekan suhu panas di Saluran Udara Tegangan Ekstra Tinggi/SUTET? Jawabannya adalah dengan Survei Thermal. Survei Thermal sangat berperan penting dalam melakukan survei pengecekan suhu panas. Kemudahan teknologi saat ini yang berkembang dengan pesat berperan penting dalam survei thermal. Apa itu survei thermal? Sektor apa saja yang membutuhkan jasa survei thermal? Yuk kita bahas lebih lanjut.

Mengenal Survei Thermal

Energi thermal atau energi panas dihasilkan ketika terjadi kenaikan suhu/ Bentuk energi yang dihasilkan ketika suatu zat di mana atom dan molekul bergetar dengan kecepatan yang lebih cepat, akibat kenaikan suhu. Penginderaan thermal merupakan pola radiasi objek yang tak terlihat dikonversi menjadi gambar yang terlihat dan gambar ini disebut termogram atau gambar thermal. Gambar thermal dapat diperoleh dengan menggunakan sensor portabel, genggam atau thermal yang digabungkan dengan sistem optik yang dipasang pada pesawat atau satelit. Teknologi ini adalah teknik non-invasif, non-kontak dan non-destruktif yang digunakan untuk menentukan sifat thermal dan fitur dari setiap objek yang menarik dan karenanya dapat digunakan untuk berbagai bidang, di mana panas dihasilkan atau hilang dalam ruang dan waktu.

Dalam proses pelaksanaannya, survei thermal dilakukan dengan menggunakan kamera thermal beresolusi tinggi yang memungkinkan melihat di luar spektrum yang dapat terlihat dan mendeteksi tanda panas. Industri seperti konstruksi, pertanian, kelistrikan, atap, dan lain sebagainya menggunakan citra thermal untuk menemukan masalah yang tidak terlihat oleh mata.

Tujuan Dari Survei thermal:

  1. Mendeteksi kehilangan panas.
  2. Menemukan kerusakan pada peralatan.
  3. Menemukan kebocoran atau titik pembuangan air limbah.
  4. Mendeteksi manusia dan hewan di area yang sangat luas.
  5. Evaluasi efisiensi thermal bangunan.
  6. Mencari objek dengan suhu tinggi: sumber api, peralatan yang terlalu panas, yang tidak terlihat pada foto biasa. dan lain sebagainya.

Kegunaan Survei Thermal Di Berbagai Bidang Industri 

Sumber: PT Kreasi Handal Selaras
  1. Survei Thermal Untuk Saluran Listrik, Survei thermal pada peralatan distribusi listrik dapat mengidentifikasi potensi masalah jauh sebelum adanya kerusakan.Biasanya survei dilakukan untuk mendukung:
  • Menugaskan switchgear baru.
  • Kegiatan pemeliharaan prediktif (mencari sambungan dan bagian yang berisiko mengalami panas berlebih, menemukan koneksi yang longgar atau perangkat yang mulai gagal).
  • Rekomendasi penilaian risiko kebakaran.
  1. Survei Thermal Untuk Bangunan, thermal bangunan adalah satu-satunya cara non-intrusif untuk menemukan insulasi yang hilang dan jembatan thermal di dalam struktur bangunan, seperti:
  • Identifikasi penghematan energi.
  • Pengecekan peralatan HVAC (Heating Ventilation dan Air-Conditioning).
  1. Survei Thermal Untuk Mekanik, inspeksi thermal peralatan mekanis mengidentifikasi masalah sebelum terjadikerusakan dan dapat mengurangi waktu henti mesin yang tidak direncanakan. Tujuannya adalah:
  • Membantu dalam penjadwalan instalasi baru.
  • Penilaian kinerja dasar.
  • Strategi Pemeliharaan Prediktif.
  1. Survei Thermal Untuk Minyak dan Gas Lepas Pantai
  2. Survei Thermal Untuk Deteksi Kebocoran dan kelembaban, Pencitraan thermal menyediakan metode non-destruktif untuk memahami sejauh mana dalam menemukan sumber kebocoran pipa bawah permukaan atau masuknya uap air ke dalam bangunan:
  • Membatasi kerusakan yang tidak perlu pada penutup lantai.
  • Dilakukan untuk mendukung klaim asuransi.
  • Commissioning gedung baru.
  1. Survei Thermal Untuk Pertanian, Dalam sektor pertanian banyak hal yang dapat dilakukan dengan teknik survei thermal.  Berikut beberapa hal yang dapat dilakukan:
  • Pemantauan rumah kaca.
  • Membuat penjadwalan irigasi.
  • Pembibitan.
  • Mendeteksi hama.
  • Mengevaluasi kematangan buah-buahan.
  • Mendeteksi memar pada buah-buahan.
  1. Survei Thermal Untuk Suhu Permukaan Tanah.

Land Surface Temperature (LST) adalah Suhu pada permukaan bumi yang merupakan hasil pantulan objek yang terekam oleh citra satelit pada waktu tertentu. LST dapat didefinisikan juga sebagai suhu permukaan rata – rata yang digambarkan dalam cakupan suatu piksel dengan berbagai tipe permukaan yang berbeda. Besarnya nilai LST dipengaruhi oleh panjang gelombang. Panjang gelombang yang paling sensitif terhadap suhu permukaan adalah inframerah thermal. Namun, pada dasarnya setiap panjang gelombang akan sensitif terhadap respon perubahan suhu yang mempengaruhi nilai pantul objek. Untuk dapat mengetahui informasi LST, dilakukan proses identifikasi suhu permukaan tanah dengan memanfaatkan gelombang thermal.

Survei pencitraan termal yang dilakukan PT.KHS dapat membantu Anda untuk mengidentifikasi kerusakan peralatan, pengecekan kerusakan pada komponen pembangkit listrik yang terletak di atas lahan yang luas, atau permasalahan lain yang membutuhkan kamera thermal dengan cepat, sehingga anda dapat dengan segera mengambil tindakan perbaikan.

Keunggulan dari jasa survei thermal kami adalah penggunaan teknologi canggih yaitu UAV dengan sensor H20T, sehingga proyek dapat selesai lebih efektif, efisien, akurat dengan harga yang bersahabat. Kami juga didukung dengan pilot yang handal dan bersertifikat sehingga anda tidak perlu khawatir terkait hasil dan keamanan saat proses survei. Tunggu apa lagi? Silahkan hubungi kami, PT. Kreasi Handal Selaras yang dapat memenuhi kebutuhan survei thermal perusahaan anda. 

Segera Hubungi kami! Untuk mengetahui informasi lebih lanjut tentang Jasa Survei Thermal. Paket informasi lengkap dapat disediakan berdasarkan permintaan.

REFERENSI

  1. Faradiva, Fella. Dkk. 2020. Land Surface Temperature (Lst) dalam https://www.handalselaras.com/land-surface-temperature-lst/ diakses pada 11 November 2022.
  2. Full Drone Solutions. 2019. Inspeksi Thermal secara Live dengan Dronedeploy dalam https://www.fulldronesolutions.com/inspeksi-thermal-secara-live-dengan-dronedeploy/ diakses pada 11 November 2022.
  3. Geoscan. Thermal Imaging survei dalam https://www.geoscan.aero/en/services/teplovizor diakses pada 10 November 2022.
  4. https://skyrevolutions.co.uk/thermal-imaging-surveys/ diakses pada 10 November 2022.
  5. Red Current. Thermographic surveis dalam https://www.red-current.com/thermal-imaging-surveys diakses pada 10 November 2022.
  6. Heli surveis. Thermal Imaging surveis dalam https://www.helisurveys.com.au/thermal-surveys diakses pada 10 November 2022.
  7. Fakultas Teknik Universitas Medan Area. 2020. Energi Termal (Energi Panas) dalam https://mesin.uma.ac.id/2020/03/08/energi-termal/ diakses pada 10 November 2022.
  8. Bagaimana cara kerja dan aplikasi thermal Imaging dalam https://www.kucari.com/bagaimana-cara-kerja-dan-aplikasi-thermal-imaging/ diakses pada 10 November 2022.

Pemanfaatan Data LiDAR Untuk Analisis Hidrologi Dalam Pembangunan Perumahan

Oleh: Arszandi Pratama, S.T, M.Sc, Tike Aprillia S.T dan Dandy Muhamad Fadilah, S.T

Dalam merencanakan kawasan perumahan sangat penting untuk mengetahui titik potensi sumber banjir. Analisis hidrologi menjadi salah satu analisis penting dalam proses pembuatan masterplan perumahan, karena dari analisis hidrologi kita dapat mengetahui titik potensi sumber banjir di kawasan perencanaan, merencanakan tinggi lantai bangunan, perencanaan sistem drainase, bahkan penanggulangan bencana di kawasan perumahan. Salah satu contoh kegunaan analisis hidrologi dalam pembangunan perumahan adalah untuk melengkapi Izin Peil Banjir sebelum sebuah pengembang mulai mengerjakan proyek perumahan. Untuk itu dalam proses perencanaan kawasan perumahan penting sekali untuk melakukan analisis hidrologi. Mari kita bahas mengenai apa peran penting analisis hidrologi untuk kawasan perumahan? Data apa saja yang dibutuhkan dalam analisis hidrologi? Bagaimana pemanfaatan Teknologi LiDAR dalam proses analisis hidrologi?. 

Pentingnya Analisis Hidrologi

Analisis Hidrologi dimaksudkan untuk melakukan analisis dari informasi / fakta di lapangan mengenai fenomena hidrologi untuk mendapatkan hasil kajian yang dibutuhkan dalam proses analisis lanjutan yang berguna untuk perencanaan / pembangunan perumahan. Analisis hidrologi berperan penting untuk memutuskan apakah lokasi tersebut layak untuk dijadikan perumahan atau tidak sekaligus dapat sebagai bahan masukan dalam merencanakan mitigasi bencana. Contoh fenomena hidrologi yang dimaksud adalah: besarnya curah hujan, penguapan, lama penyinaran matahari, kecepatan angin, debit sungai, tinggi muka air sungai, kecepatan aliran dan konsentrasi sedimen sungai. Dengan mengetahui fenomena hidrologi didukung dengan data lain yang diperlukan maka akan sangat berguna dalam proses perencanaan pembangunan perumahan. 

Tujuan Analisis Dalam Pembangunan Perumahan

  1. Mengumpulkan informasi terkait kondisi/ fakta hidrologi di kawasan perencanaan;
  2. Sebagai bahan pertimbangan dalam melakukan perencanaan pembangunan perumahan;
  3. Sebagai bahan pertimbangan dalam penggunaan material bangunan perumahan;
  4. Mitigasi bencana.

Beberapa Data Yang Dibutuhkan Dalam Proses Analisis Hidrologi

  1. Data Iklim
  2. Data Topografi
  3. Data Tata Guna Lahan
  4. Data Jenis Tanah
  5. Data Sungai/ Waduk dan lainnya

Pemanfaatan LiDAR Dalam Analisis Hidrologi

LiDAR adalah teknologi yang menerapkan sistem penginderaan jauh sensor aktif untuk menentukan jarak dengan menembakkan sinar laser yang dipasang pada wahana pesawat. Sistem LiDAR pada umumnya banyak beroperasi dengan menggunakan gelombang near infrared (NIR). Namun beberapa sensor pun ada yang menggunakan spektrum gelombang hijau untuk menembus air dan mendeteksi keadaan di dasar air. Data yang dihasilkan dari akuisisi data LiDAR yaitu data dalam bentuk point cloud. Point cloud merupakan kumpulan titik yang mewakili bentuk atau fitur tiga dimensi (3D). Setiap titik memiliki koordinat X, Y, dan Z. Ketika terdapat banyak kumpulan point cloud yang disatukan, maka point cloud tersebut akan membentuk suatu permukaan atau objek dalam bentuk 3D. 

Data point cloud dapat digunakan untuk membuat model tiga dimensi permukaan bumi (3D), seperti digital elevation model (DEM), digital surface model (DSM), dan normalized digital surface model (NDSM). Selain itu, DEM yang dihasilkan pun dapat digunakan lagi untuk membuat garis kontur. Dalam analisis hidrologi, peran LiDAR adalah untuk menghasilkan Data DEM yang yang berguna untuk mengetahui topografi di kawasan perencanaan perumahan. Data DEM juga memiliki peranan penting untuk analisis lanjutan lainnya.

Contoh data DEM dari akuisisi LiDAR

Studi Kasus Proyek PT.KHS: Pemanfaatan LiDAR Dalam Studi Peil Banjir Kawasan Perumahan

Definisi Peil Banjir adalah pengaturan ketinggian minimal lantai bangunan yang ditentukan berdasarkan lokasi perumahan tersebut, yang bertujuan untuk mencegah air banjir meluap dan masuk ke dalam bangunan jika lantai terlalu rendah pada daerah yang memiliki intensitas pembangunan yang tinggi, rekomendasi Peil Banjir sangat dibutuhkan karena tingkat rawan banjir yang lebih beresiko.  Izin peil banjir ini adalah salah satu dari sekian izin yang harus dilengkapi sebelum sebuah pengembang mulai mengerjakan proyek perumahan. Tentu ketetapan tentang kerendahan muka tanah ini sangat berpengaruh bagi kelancaran pembangunan dan pengarahan desain bagian bawah sebuah bangunan. 

Dalam proses pengerjaannya, output yang dihasilkan oleh Tim KHS adalah dapat mengetahui debit banjir rencana yang digunakan untuk permodelan hidrolis banjir, mengetahui sistem air di area site dan rekomendasi pengelolaannya, menentukan level muka air banjir, serta memberikan rekomendasi peil banjir di kawasan perumahan.

Dalam studi kasus ini, Teknologi LiDAR digunakan untuk proses mendapatkan data ketinggian dan kontur kawasan yang sangat dibutuhkan dalam proses analisis hidrologi untuk studi peil banjir di kawasan perumahan. Dengan pengalaman proyek tersebut kami berpengalaman dalam proses pengambilan data ketinggian dan kontur kawasan perumahan menggunakan LiDAR serta melakukan analisis hidrologi. 

Skema Dasar Perencanaan Peil Banjir

Penutup

Analisis hidrologi menjadi sangat penting dalam proses pemilihan lokasi ataupun bahan pertimbangan mitigasi bencana di kawasan perumahan. Tidak hanya fenomena hidrologi yang dibutuhkan dalam proses analisis hidrologi, namun perlu data-data lain yang menunjang dalam proses analisisnya. Salah satunya adalah data ketinggian dan kontur kawasan. Untuk mendapatkan data tersebut, penggunaan teknologi LiDAR sangat berperan penting. PT. KHS memiliki sumber daya yang handal dalam penggunaan teknologi LiDAR.

Selain berpengalaman dalam mengerjakan proyek Analisis Hidrologi, kami juga berpengalaman dengan penggunaan teknologi LiDAR. PT.KHS juga didukung dengan teknologi UAV canggih dan pilot yang handal dan bersertifikat sehingga anda akan mendapatkan hasil kerja yang memuaskan dengan harga yang bersahabat. Tunggu apa lagi? Silahkan hubungi kami, PT. Kreasi Handal Selaras yang dapat memenuhi kebutuhan jasa LiDAR dan analisis hidrologi perusahaan anda. 

Untuk informasi lebih lanjut tentang Jasa Survei dan Pemetaan, silakan hubungi kami. Paket informasi lengkap dapat disediakan berdasarkan permintaan.

REFERENSI

  1. Apa itu Lidar. https://www.handalselaras.com/apa-itu-lidar/ Diakses pada 11 Oktober 2022.
  2. Negoro, Agung Noto dan Pramawan, Heri. (2008). Perencanaan Teknis Embung Silandak Sebagai Pengendali Banjir Kali Silandak Semarang – Jawa Tengah. Skripsi Universitas Dipenogoro.
  3. Tak Sekedar Kejar Untung, Developer Mesti Bereskan Analisa Hidrologi dalam https://rakyatbengkulu.com/2022/01/23/tak-sekedar-kejar-untung-developer-mesti-bereskan-analisa-hidrologi/ Diakses pada 11 Oktober 2022.
  4. Peil Banjir – Penting dlakukan Untuk Membangun Sebuah Proyek dalam https://smartplusconsulting.com/2019/07/peil-banjir-penting-dilakukan-sebelum-membangun-sebuah-proyek/ Diakses pada 21 Oktober 2022.
  5. Rekomendasi Peil Banjir dalam https://perizinanrealestate.wordpress.com/jenis-perizinan/rekomendasi-teknis/rekomendasi-peil-banjir/ Diakses pada 21 Oktober 2022.
  6. PT. Kreasi Handal Selaras. (2022). Studi Kasus Proyek Studi Peil Banjir Kawasan Perumahan.

Mengenal Tahapan Cut And Fill Dalam Persiapan Lahan

Oleh: Arszandi Pratama, S.T, M.Sc, Tike Aprillia S.T dan Dandy Muhamad Fadilah, S.T

Dalam persiapan lahan untuk gedung atau konstruksi lainnya seperti jalan, bendungan, dan lainnya proses Cut and Fill sangat lah penting.  Cut and fill merupakan salah satu istilah dalam konstruksi yang dikenal dengan menggali dan menimbun. Jadi Cut and Fill merupakan proses pengerjaan tanah dimana sejumlah material baik tanah maupun bebatuan yang diambil dari tempat tertentu dan kemudian dipindahkan ke tempat lain agar tercipta elevasi yang diinginkan. Oleh karena itu, sebelum pengerjaannya dibutuhkan pengukuran dan perhitungan yang teliti. Proses ini umumnya dilakukan pengembang untuk melakukan perataan lahan yang berkontur sehingga pembangunan kawasan perencanaan lebih efisien.

Tujuan Cut and Fill

Umumnya tujuan Cut and Fill adalah untuk menciptakan permukaan tanah yang lebih rata agar proses konstruksi pembangunan lebih mudah. Berikut beberapa tujuan dari cut and fill:

  1. Mencegah terjadinya penurunan permukaan tanah
  2. Meratakan permukaan tanah
  3. Menyangga bebatuan di sekelilingnya agar tidak longsor atau amblas
  4. Memberikan akses ke area lain.

Faktor Yang Mempengaruhi Proses Cut And Fill

Dalam proses Cut and fill, ada banyak faktor yang mempengaruhi prosesnya. Salah satunya adalah kondisi tanah. Inilah salah satu bagian penting dalam konstruksi dimana tanah sendiri merupakan material yang terdiri dari agregat mineral-mineral padat. Material tersebut tersementasi satu sama lain disertai dengan bahan organik yang melapuk serta zat cair dan gas yang akan mengisi ruang antara partikel padat dalam tanah. Salah satu contoh jenis tanah adalah lempung. Tanah ini sifatnya adalah kohesif dan plastis. Kondisi material tersebutlah yang bisa mempengaruhi volume tanah serta proses pendistribusiannya. Keadaaan material tersebut bisa digambarkan ke dalam beberapa kondisi, yaitu:

  • Keadaan asli, maksud dari “keadaan asli” adalah suatu kondisi material sebelum dilakukan pengerjaan atau ketika masih dalam ukuran alam. Keadaan inilah yang digunakan sebagai dasar perhitungan jumlah pemindahan.
  • Keadaan lepas adalah suatu kondisi tanah setelah diadakan pengerjaan. Contohnya adalah tanah yang berada di depan dozer blade ataupun di atas dump truck. Dalam kondisi ini ada penambahan rongga udara di antara butiran-butiran tanah. Hal ini membuat volume menjadi lebih besar.
  • Keadaan padat, keadaan ini adalah ketika material ditimbun dan dilakukan proses pemadatan. Pada kondisi ini maka terjadi perubahan volume karena adanya penyusutan rongga udara diantara partikel-partikel tanah yang membuatnya berubah ukuran meskipun beratnya tetap. Volume tanah setelah dilakukan pemadatan bisa jadi lebih besar maupun lebih kecil yang tergantung pada usaha pemadatan yang dilakukan.

Pada kedua proses cut and fill, maka dibutuhkan alat berat. Operator khusus juga dibutuhkan dalam pendistribusian tanah ini. Hal ini akan mendukung kerja konstruksi khususnya dalam mengawali sebuah proyek. Hal ini akan menjadi salah satu faktor penentu besaran budget proyek sampai dengan keberhasilan konstruksi yang dijalankan.

Pengaplikasian Metode Cut And Fill

  • Contoh pengaplikasian cut and fill yaitu saat pembukaan lahan baru, dimana sebelum melakukan kegiatan konstruksi bangunan akan dilakukan proses cut and fill agar sesuai dengan level yang diinginkan. Misalnya pembangunan gedung baru, pembuatan pondasi dan pekerjaan-pekerjaan sipil lainnya.
  • Pada pekerjaan pembuatan jalan, proses cut and fill dilakukan agar kondisi jalan rata, sesuai elevasi dan lebar yang diinginkan. Misalnya pembuatan jalan yang mana harus memotong tebing, ataupun memotong level tanah agar sesuai dengan rencana tebal limestone dan beton.
  • Cut and fill pada pertambangan dilakukan untuk mengambil material alam yang berharga. Kemudian bekas galian akan di urug kembali dengan tanah bebatuan agar dinding tanah tidak ambruk.

Tahapan Perencanaan Proses Cut And Fill

Dalam sebuah pembangunan atau pembukaan lokasi baru dalam konstruksi selalu berkaitan dengan proses penggalian tanah (cut) dan pengurugan tanah (fill). Dalam hal ini, maka pekerjaan tanah dapat diklasifikasikan menjadi 2 jenis contoh data permukaan tanah yaitu permukaan tanah asli (original ground) dan permukaan tanah yang direncanakan (design ground). Berikut merupakan langkah-langkah perencanaan cut and fill suatu lahan yang akan dikerjakan:

Gambar Langkah Perencanaan Cut And Fill

Sumber: Angga Nugraha dalam Perencanaan Cut And Fill (Teknik Sipil dan Lingkungan IPB)
  1. Original Ground

Yang dimaksud adalah peninjauan lokasi lahan existing yang akan dieksekusi atau dilakukan pembangunan sesuai peruntukannya. Hal ini agar diketahui lokasi tersebut berada dimana, akses jalan ataupun prasarana yang ada disana seperti apa, kondisi lingkungan, kondisi tanah serta data-data pendukung lainnya bagaimana, yang kemudian akan digunakan untuk perencanaan pembangunan lahan (design ground) serta faktor inilah akan menjadi penentu awal yang mempengaruhi besar kecilnya biaya yang akan dibutuhkan untuk pembangunan sesuai peruntukannya.

Contoh Data Ground Existing Yang Disurvei Menggunakan UAV LiDAR.

Sumber: Olahan Data PT. Kreasi Handal Selaras, 2022.

  1. Surveying/ Pengukuran Lahan

Langkah selanjutnya setelah peninjauan lokasi, maka dilakukanlah pengukuran lahan baik secara manual maupun menggunakan alat ukur seperti Lidar, theodolite, atau GPS maupun alat ukur lainnya. Hal ini bertujuan untuk mengetahui secara presisi bentuk kontur lahan maupun batas lahan di lokasi tersebut. Hasil ini digunakan untuk menentukan perencanaan cut and fill lahan, penyediaan prasarana seperti jalan, instalasi air maupun titik-titik bangunan yang akan dibangun.

Contoh Kegiatan Survei Tim PT Kreasi Handal Selaras Dalam Pengambilan Data Untuk Membuat Kontur Menggunakan GPS Dan UAV LiDAR.

Sumber: Kegiatan survey kontur menggunakan GPS dan UAV LiDAR yang dilakukan PT. Kreasi Handal Selaras, 2022.

(Catatan Penulis: Hal ini tidak perlu dilakukan apabila lokasi lahan sudah mempunyai peta situasi yang terdapat garis-garis konturnya)

  1. Pengolahan Data Hasil Survey dan Perencanaan Lahan (Ground Design)

Data yang telah didapat dari hasil survei atau pengukuran lahan kemudian diolah agar dapat disajikan secara visual sehingga memudahkan dalam tahap pembangunan maupun perencanaan biayanya. Sebagai contoh, data lahan didapat dengan mengukur lahan menggunakan alat theodolite, kemudian data tersebut diinput kedalam software yang dapat menyajikan kontur seperti Surfer, CAD,  ataupun software-software GIS lainnya. Hasil pengolahan data tersebut dapat digunakan untuk merencanakan bangunan apa saja yang akan dan perlu disediakan disana, jenis prasarana apa saja yang perlu dibuat disana, instalasi airnya seperti apa agar dapat menyediakan kebutuhan air di lokasi tersebut serta titik-titik bangunannya yang akan dibangun di lokasi mana sehingga besarnya cut and fill tanah dapat menyesuaikan.

Contoh Pengolahan Data Hasil Survey Di Software Autocad

Sumber: Olahan Data PT. Kreasi Handal Selaras, 2022.

Contoh Gambar Penampang Galian (Cut) dan Timbunan (Fill)

Sumber: Angga Nugraha dalam Perencanaan Cut And Fill (Teknik Sipil dan Lingkungan IPB)

(Catatan Penulis: Perhitungan kebutuhan volume cut and fill dapat juga dilakukan manual dengan cara menghitung secara matematis tergantung kontur atau bentuk lahannya, misalnya berbetuk persegi yang tinggal mengitung volume persegi (p x l x t), misal berbetuk trapesium tinggal menggunakan rumus volume trapesium maupun lainnya, kuncinya terdapat pada data pengukuran lahan)

Contoh Gambar Penampang Galian (Cut) dan Timbunan (Fill)

Sumber: https://jasapengurukantanah.blogspot.com/p/cut-fill-land.html

Dari proses ini akan didapatkan jumlah volume yang perlu digali dan ditimbun, yang kemudian dapat digunakan dalam perhitungan RAB.

  1. Perhitungan RAB (Rencanan Anggaran Biaya)

Setelah diketahui kontur tanah dan dibuat desain perencanaan bangunan apa saja yang akan dibangun dan disediakan disana, maka dapatlah dihitung besarnya jumlah biaya yang perlu dikeluarkan terutama untuk hal paling pertama yaitu besarnya biaya cut and fill di lahan tersebut sesuai volume yang telah dihitung dan didapat dari data pengukuran dan pengolahan data.

(Catatan Penulis: untuk perhitungan RAB Cut and Fill diperlukan juga pengetahuan mengenai estimasi sewa alat yang dibutuhkan. Misal dalam cut, maka dibutuhkan excavator untuk menggali tanah, truk untuk mengangkut tanah yang dibuang, dozer untuk perataan tanah, serta biaya penyewaan area buangan tanah. Sedangkan untuk fill, maka dibutuhkan tanah untuk menimbun (dimana perhitungan tanah harus dikalikan waste, misal kebutuhan sesuai perhitungan adalah 1 m3, maka dibuatlah harga pembelian tanah sebanyak 1.2 x volume yaitu 1 m3 sehingga kebutuhan timbunan perhitungan 1 m3 perhitungan sama dengan 1.2 m3 total tanah real yang dibutuhkan dilapangan), truk untuk mengakut tanah ke lokasi, dozer untuk pemadatan dan perataan tanah)

Contoh Gambar Penampang Galian (Cut) dan Timbunan (Fill)

Sumber: Angga Nugraha dalam Perencanaan Cut And Fill (Teknik Sipil dan Lingkungan IPB)

(Catatan Penulis: Dalam proses cut and fill yang baik adalah saat mengcut tanah/menggali tanah, tanah galian tersebut harus bisa dimanfaatkan sebaik mungkin untuk mengfill tanah/menimbun tanah di titik bagian lokasi lain yang membutuhkan untuk ditimbun, hal ini bertujuan agar biaya cut fill dapat ditekan seminimal mungkin sehingga tidak terjadi overcost dikarenakan metode ini dapat mengurangi jumlah biaya untuk pembuangan tanah maupun biaya untuk pembelian tanah timbunan)

  1. Eksekusi/ Pelaksanaan Pembangunaan

Tahap terakhir setelah tahap-tahap diatas didapat, maka dilakukan pada tahap pembangunannya sesuai dengan rencana.

Penutup

Cut and fill sangat penting dalam proses perencanaan pembuatan perumahan, jalan, atau kegiatan konstruksi lainnya. Perencanaan cut and fill ini tidak sesederhana menggali dan menimbun saja. Kesalahan pengukuran dan perencanaan dalam tahapan ini dapat mengakibatkan banjir, longsor, dan hal lainnya. Salah satu hal terpenting lainnya adalah pada saat peninjauan lokasi dan pengukuran lahan. Dengan data yang presisi maka dapat membantu memperlancar proses kegiatan cut and fill. Selain itu, aspek perencanaan kedepannya  juga sangat terkait dalam cut and fill.

PT. KHS berpengalaman dalam melakukan survei topografi yang dibutuhkan dalam proses cut and fill. Penggunaan teknologi LiDAR dapat membantu proses cut and fill lebih cepat dan tepat. PT.KHS juga didukung dengan pilot yang handal dan bersertifikat dengan harga jasa yang bersahabat. Tunggu apa lagi? Silahkan hubungi kami, PT. Kreasi Handal Selaras yang dapat memenuhi kebutuhan survei topografi untuk proses cut and fill dalam proyek perusahaan anda. 

Untuk informasi lebih lanjut tentang Jasa Survei dan Pemetaan, silakan hubungi kami. Paket informasi lengkap dapat disediakan berdasarkan permintaan.

REFERENSI

  1. https://www.rei.or.id/newrei/berita-standar-ganda-beleid-cut-and-fill.html#:~:text=Dalam%20usaha%20properti%2C%20Cut%20and,pembangunan%20kawasan%20perumahan%20lebih%20efisien. Diakses pada 2 Oktober 2022.
  2. https://www.greenplanet.co.id/index.php/ind/single?id=166&category=Cut+and+Fill+Proyek Diakses pada 2 Oktober 2022.
  3. https://alitmix.com/mengenal-cut-and-fill-dan-perhitungan-volumenya/ Diakses pada 2 Oktober 2022.
  4. https://www.slideshare.net/AnggaNugraha15/perencanaan-cut-and-fill-lahan Diakses pada 2 Oktober 2022.
  5. https://www.jasaurug.com/read/cut-and-fill-lahan-proyek Diakses pada 2 Oktober 2022.
  6. https://jasapengurukantanah.blogspot.com/p/cut-fill-land.html .Diakses pada 2 Oktober 2022.
  7. Hasil survei lapangan dan analisis dari Tim Kreasi Handal Selaras, 2022.

LiDAR (Light Detection and Ranging)

Oleh : Tike Aprillia, S.T dan Rabby Awalludin, S.T

LiDAR atau juga dikenal sebagai LADAR adalah akronim untuk light detection and ranging. LiDAR adalah teknologi yang menerapkan sistem penginderaan jauh sensor aktif untuk menentukan jarak dengan menembakkan sinar laser yang dipasang pada wahana pesawat. Jarak didapatkan dengan menghitung waktu antara ditembakkannya sinar laser dari sensor sampai diterima kembali oleh sensor.

Teknologi light detection and ranging (LiDAR) saat ini telah banyak dikembangkan. Output LiDAR berupa data tiga dimensi (3D) dengan akurasi yang cukup tinggi dan pengambilan data yang lebih cepat menjadikan teknologi ini mulai banyak diaplikasikan dalam berbagai bidang. Sehingga, teknologi ini dapat digunakan sebagai alternatif dari teknologi pemetaan secara konvensional (pemetaan terestris).

Pada area pengukuran yang luas, LiDAR akan sangat efisien digunakan dibandingkan dengan metode pemetaan konvensional. Hal ini karena waktu pengambilan dan pemrosesan data dapat dilakukan lebih cepat. Selain itu output LiDAR sudah dalam bentuk digital, sehingga tidak perlu dilakukan proses digitalisasi.

Pada perkembangan awalnya, LiDAR dibawa oleh wahana pesawat udara atau disebut dengan Airborne LiDAR. Namun karena biaya sewa pesawat cukup mahal, maka dikembangkanlah wahana pesawat tanpa awak yang dapat membawa sensor LiDAR. Pesawat tanpa awak ini dikenal juga sebagai Unmanned Aerial Vehicle (UAV). Dimana wahana yang dimaksud dapat terbang sesuai dengan perencanaan terbang (autopilot) dan dapat melakukan pengambilan data LiDAR. Berikut beberapa contoh UAV dan sensor yang digunakan untuk survei LiDAR:

Gambar 1. Sensor LiAir 220
Gambar 2. Lidar Livox dengan DJI Matrice 300 RTK

Data yang dihasilkan dari akuisisi data LiDAR yaitu data dalam bentuk point cloudPoint cloud merupakan kumpulan titik yang mewakili bentuk atau fitur tiga dimensi (3D). Setiap titik memiliki koordinat X, Y, dan Z. Ketika terdapat banyak kumpulan point cloud yang disatukan, maka point cloud tersebut akan membentuk suatu permukaan atau objek dalam bentuk 3D. Sehingga topografi dari area yang disurvei dapat langsung terlihat.

Gambar 3. Point Cloud Tergeoreferensi

LiDAR dapat memperoleh data di bawah kanopi pohon. Hal ini lah yang menjadi keunggulan LiDAR dibandingkan dengan fotogrametri dan pemetaan menggunakan citra satelit. Meskipun tidak semua data di bawah kanopi pohon dapat diperoleh, tetapi data tersebut dapat dijadikan sampel titik permukaan tanah di daerah yang berpohon tersebut. Hal ini karena LiDAR menggunakan sinar laser, sehingga selama masih ada celah cahaya yang bisa menembus ke bawah kanopi pohon, maka data LiDAR dapat diperoleh.

Gambar 4. Data ground dibawah pohon rimbun yang terambil oleh LiDAR.

Data point cloud dapat digunakan untuk membuat model tiga dimensi permukaan bumi (3D), seperti digital terrain model (DTM), digital surface model (DSM), dan normalized digital surface model (NDSM). Namun, sebelumnya point cloud harus diklasifikasikan menjadi ground point dan non-ground point terlebih dahulu. Ground point adalah point cloud yang membentuk permukaan bumi, tanpa objek-objek diatasnya seperti vegetasi, rumah, dll. Sedangkan non-ground point adalah point cloud yang membentuk objek-objek diatas permukaan bumi, seperti vegetasi, rumah, dll. Ground point ini akan digunakan untuk membuat DTM, sedangkan non-ground point akan digunakan untuk membentuk DSM dan NDSM. Selain itu, DEM yang dihasilkan pun dapat digunakan lagi untuk membuat garis kontur.

Digital Terrain Model (DTM) merupakan penyajian persebaran titik diskrit yang merepresentasikan distribusi spatial elevation permukaan yang berubah-ubah dengan referensi datum tertentu. DTM menyajikan permukaan bumi tanpa menampilkan fitur vegetasi, bangunan, dan struktur buatan manusia yang lainnya.

Gambar 5. Digital Terrain Model (DTM).

Digital Surface Model (DSM) adalah model permukaan bumi yang meluputi fitur alami maupun buatan manusia, misalnya gedung, vegetasi, dan pepohonan. DSM juga merupakan model elevasi topografis permukaan bumi yang memberi batas acuan yang benar secara geometris. DSM menggambarkan puncak fitur yang terdapat di atas bare earth.

Gambar 6. Digital Surface Model.

Normalized Digital Surface Model (NDSM) adalah penyajian model elevasi objek pada permukaan datar. Model ini diperoleh dari perbedaan antara DSM dan DEM. NDSM dihitung dengan cara mengurangkan DSM dengan DEM. Penghitungan ini akan didapatkan tinggi objek yang ada di atas permukaan tanah.

Gambar 7. Normalized Digital Surface Model (NDSM).

Garis kontur adalah garis khayal pada peta yang meghubungkan titik-titik dengan ketinggian yang sama. Garis kontur disajikan di atas peta untuk memperlihatkan naik turunnya keadaan permukaan tanah, juga untuk memberikan informasi slope (kemiringan tanah), irisan profil memanjam permukaan tanah terhadap jalur proyek, dan perhitungan galian serta timbunan (cut and fill) permukaan tanah.

Gambar 8. Garis Kontur 0.5 m.

Teknologi LiDAR yang menghasilkan output dengan akurasi data yang cukup akurat dan presisi, menjadikan teknologi ini mulai banyak digunakan. Berikut adalah aplikasi LiDAR dalam beberapa bidang:

  • Pemodelan Banjir

Dalam pemodelan banjir, LiDAR berperan dalam membentuk digital terrain model (DTM). DTM yang dihasilkan dari LiDAR memiliki kualitas data dan resolusi spasial yang lebih baik dibandingkan dengan citra satelit. DTM ini berfungsi untuk membentuk model geometri sungai yang akan digunakan pada tahapan simulasi banjir.

  • Mitigasi dan Pemantauan Tanah Longsor

Pada pemantauan tanah longsor, pengambilan data LiDAR dilakukan secara berkala dalam selang waktu tertentu. Pergerakan tanah dapat dipantau dari perubahan data yang didapatkan. Pemantauan tanah longsor menggunakan LiDAR akan menghasilkan model tiga dimensi dari lereng yang diamati.

  • Pemetaan Kawasan Hutan

Sinar laser yang dipancarkan oleh LiDAR dapat menembus celah-celah kecil pada kanopi pohon. Hal ini menjadikan LiDAR dapat merekam data di bawah kanopi pohon. Sehingga, dengan menggunakan LiDAR dapat dihasilkan DEM pada kawasan hutan. DEM dalam pemetaan kawasan hutan digunakan untuk menentukan zonasi bahaya kebakaran hutan.

  • Survei Pertambangan

Pada survei pertambangan LiDAR digunakan untuk memantau kemiringan lereng, menghitung volum stock pile, dan melakukan cut and fill.

  • Deteksi Bahaya Pada Jalur Transmisi Listrik

Output LiDAR yang dapat dikembangkan untuk kepentingan PLN yaitu point cloud tergeoreferensi, DTM, dan kontur. Point cloud dapat digunakan untuk analisis bahaya objek-objek pada jalur di sekitar kabel listrik dan SUTET atau SUTT. DTM dan kontur dapat digunakan untuk perencanaan desain pembuatan jalur listrik.

Gambar 9. Rincian Detail Dari Daftar Indikasi Bahaya (Kritis) Hasil Analisis.

  • Perencanaan Pembangunan Perumahan.

Data Lidar dapat memberikan data kontur sampai dengan 1:1.000 atau rentan 0,5m. Perencanaan “cut and fill” dapat di rencanakan dengan baik sehingga biaya untuk pematangan lahan bisa di optimalkan dari aset tanah yang ada. Perencanaan untuk infrastruktur kawasan seperti jalan dan drainase juga bisa bersamaan dilakukan. Selain itu DTM hasil dari data LiDAR dapat digunakan untuk analisis hidrologi di area perumahan yang dibangun.

  • Pemetaan Geohazard

DTM hasil dari pengolahan data LiDAR dapat digunakan untuk mengetahui besar kemiringan lereng (slope) dan arah pergerakan lereng (aspect). Data slope dan aspect selanjutnya dapat digunakan untuk analisis arah pergerakan tanah.

  • Inventarisasi Pohon

Inventarisasi pohon dapat dilakukan dengan survei lidar dengan kondisi area yang disurvei memiliki pohon dengan jenis, umur, dan jarak antar pohon yang sama. Analisis ini menggunakan point cloud dan data NDSM dari output LiDAR. Hasil analisis yang didapatkan yaitu jumlah, tinggi, dan diameter crown pohon.

Apa itu LiDAR?

Oleh : Tike Aprillia Hartini

Teknologi light detection and ranging (LiDAR) saat ini telah banyak dikembangkan. Output LiDAR berupa data tiga dimensi (3D) dengan akurasi yang cukup tinggi dan pengambilan data yang lebih cepat menjadikan teknologi ini mulai banyak diaplikasikan dalam berbagai bidang. Sehingga, teknologi ini dapat digunakan sebagai alternatif dari teknologi pemetaan secara konvensional (pemetaan terestris).

Pada area pengukuran yang luas, LiDAR akan sangat efisien digunakan dibandingkan dengan metode pemetaan konvensional. Hal ini karena waktu pengambilan dan pemrosesan data dapat dilakukan lebih cepat. Selain itu output LiDAR sudah dalam bentuk digital, sehingga tidak perlu dilakukan proses digitalisasi.

Namun, teknologi LiDAR ini masih terdengar asing oleh orang awam. Sehingga, pada artikel ini akan dijelaskan mengenai apa itu LiDAR? Bagaimana prinsip kerja LiDAR? Apa saja output data LiDAR? Dan bagaimana pengaplikasian LiDAR dalam beberapa bidang?

LIGHT DETECTION AND RANGING (LIDAR)

LiDAR atau juga dikenal sebagai LADAR adalah akronim untuk light detection and ranging. LiDAR adalah teknologi yang menerapkan sistem penginderaan jauh sensor aktif untuk menentukan jarak dengan menembakkan sinar laser yang dipasang pada wahana pesawat. Jarak didapatkan dengan menghitung waktu antara ditembakkannya sinar laser dari sensor sampai diterima kembali oleh sensor.

LiDAR dapat dengan cepat mengukur permukaan bumi dengan laju pengambilan sampel data lebih besar dari 150 kilohertz (150.000 pulsa per detik) [6]. LiDAR menghasilkan produk berupa kumpulan titik awan (points cloud) yang tergeoreferensi, sehingga menghasilkan representasi tiga dimensi (3D) dari permukaan bumi dan objek-objek diatasnya. Sistem LiDAR pada umumnya banyak beroperasi dengan menggunakan gelombang near infrared (NIR). Namun beberapa sensor pun ada yang menggunakan spektrum gelombang hijau untuk menembus air dan mendeteksi keadaan di dasar air.

LiDAR dapat memperoleh data di bawah kanopi pohon. Hal ini lah yang menjadi keunggulan LiDAR dibandingkan dengan fotogrametri dan pemetaan menggunakan citra satelit. Meskipun tidak semua data di bawah kanopi pohon dapat diperoleh, tetapi data tersebut dapat dijadikan sampel titik permukaan tanah di daerah yang berpohon tersebut. Hal ini karena LiDAR menggunakan sinar laser, sehingga selama masih ada celah cahaya yang bisa menembus ke bawah kanopi pohon, maka data LiDAR dapat diperoleh.

KOMPONEN LIDAR

Sistem LiDAR terdiri dari empat komponen dasar, yaitu sensor LiDAR, Global Positioning System (GPS), Inertial Measuring Unit (IMU), dan kamera digital [5]. Komponen-komponen tersebut akan dijelaskan dalam uraian berikut:

1.        Sensor LiDAR

Sensor LiDAR berfungsi sebagai pemancar sinar laser ke objek dan merekam kembali setelah mengenai objek. Sensor laser memiliki beberapa karakteristik yang dapat dibedakan dari kekuatan sinar laser yang dipancarkan, cakupan dari pancaran sinar gelombang laser, dan jumlah sinar laser yang dihasilkan per detik. Salah satu karakteristik sensor laser LiDAR yang menjadi kelebihan LiDAR dibandingkan dengan yang lain adalah kemampuan gelombang tersebut untuk melakukan multiple return, yakni sensor LiDAR dapat merekam beberapa kali gelombang pantul dari objek yang ada dipermukaan bumi untuk setiap gelombang yang dipancarkan. Multiple return digunakan untuk menentukan bentuk dari objek atau vegetasi yang menutupi permukaan tanah. Gambar 1. menunjukkan ilustrasi dari multiple return. Gambar tersebut menunjukkan gelombang yang dipancarkan tidak hanya mengenai objek yang ada di atas permukaan tanah saja, tetapi juga mengenai permukaan tanah di bawah objek tersebut.

Multiple Return
Sumber: Lohani, 2010

Permukaan objek yang pertama kali memantulkan pulsa laser akan menjadi gelombang pantul pertama (first return). Gelombang ini yang umumnya digunakan untuk membuat Digital Surface Model (DSM). Objek yang kedua kalinya memantulkan pulsa tersebut akan menjadi second return dan seterusnya hingga gelombang pantulan terakhir.

2.       Global Positioning System (GPS)

Metode penentuan posisi GPS yang digunakan dalam sistem LiDAR adalah diferensial kinematik. Posisi wahana terbang selalu bergerak dan berubah-ubah dengan cepat ketika akuisisi data, maka dilakukan penentuan posisi GPS dengan metode kinematik untuk mendapatkan posisi dengan ketelitian yang tinggi. Pada Gambar 2. diilustrasikan konfigurasi antara base station dan rover, sehingga menghasilkan koordinat titik yang disimpan sebagai point cloud.

Metode Diferensial Kinematik yang Digunakan Pada LiDAR
Sumber: Lohani dan Ghosh, 2017

Metode diferensial kinematik memerlukan dua buah receiver GPS. Satu receiver diletakkan pada sebuah titik yang telah diketahui koordinatnya di permukaan tanah yang berfungsi sebagai base (stasiun referensi), sedangkan receiver yang lain diletakkan pada wahana terbang sebagai roving receiver. Konfigurasi dari keduanya menghasilkan koreksi diferensial pada roving receiver, sehingga posisi laser pada wahana terbang dapat diketahui secara real time dan akurat [1]. Data GPS yang telah dihasilkan kemudian diolah secara post processing dan digabungkan dengan data Inertial Measuring Unit (IMU), sehingga diperoleh koordinat yang telah terdefinisi secara geografis

3.       Inertial Measuring Unit (IMU)

Inertial Measuring Unit (IMU adalah salah satu komponen dalam sistem LiDAR. IMU berfungsi sebagai instrumen yang mendeteksi pergeseran rotasi dari wahana terbang terhadap sumbu-sumbu sistem terbang. Sistem tersebut dapat mengukur sudut perubahan berupa attitude wahana terbang (pitch, roll, dan yaw) terhadap sumbu-sumbu terbang. Selain itu, IMU juga dapat mendeteksi perubahan percepatan pada wahana pesawat terbang. Gambar 3. mengilutrasikan keadaan pitch, roll, dan yaw dari wahana terbang.

Ilustrasi Pitch, Roll, dan Yaw
Sumber: https://www.researchgate.net/figure/Inertial-Measurement-Unit-2_fig1_262883017

Pitch adalah pergerakan rotasi sumbu y wahana terbang terhadap sumbu y sistem terbang. Sumbu y wahana terbang didefiniskan sebagai garis pada bidang horizontal yang tegak lurus sumbu x wahana terbang. Sumbu y sistem referensi terbang didefinisikan sebagai garis yang tegak lurus dengan arah terbang horizontal wahana.

Roll adalah pergerakan rotasi sumbu x wahana terbang terhadap sumbu x pada sistem referensi terbang. Sumbu x wahana terbang didefinisikan sebagai garis lurus pada bidang horizontal yang melalui bagian depan (hidung) wahana terbang hingga bagian belakang (ekor) wahana terbang. Garis ini membagi dua badan pesawat sama besar. Sumbu x dari sistem referensi terbang didefinisikan sebagai garis yang berimpit dengan arah terbang horizontal wahana.

Yaw adalah sudut antara sumbu z wahana terbang terhadap arah utara. Sumbu z wahana terbang didefinisikan sebagai garis yang tegak lurus terhadap sumbu x dan y wahana terbang [5].

IMU memantau attitude wahana terbang sehingga dapat dilakukan koreksi untuk setiap posisi objek pada saat akuisisi data. Tanpa informasi dari IMU posisi footprint dari sinar laser yang dipancarkan tidak dapat diketahui secara pasti.

4.       Kamera Digital

Kamera dalam sistem LiDAR berfungsi untuk menghasilkan foto dari area pengukuran LiDAR. Foto tersebut dapat ditumpang tindihkan (overlay) dengan data X, Y, Z hasil pengukuran LiDAR. Informasi ini digunakan ketika operator melakukan post processing data LiDAR [13].

PRINSIP KERJA LIDAR

Secara umum prinsip kerja LiDAR adalah gelombang laser memancarkan pulsa dan memindai objek pada permukaan bumi, kemudian akan diukur waktu tempuh pulsa laser menuju suatu objek sampai kembali ke sensor.  Hasil ukuran waktu tempuh tersebut dapat digunakan untuk menghitung jarak sensor ke objek. Setelah itu nilai jarak dan sudut pancaran akan dikoreksi menggunakan IMU untuk mendapatkan koreksi pergerakan wahana. Posisi tiga dimensi setiap titik yang direkam datanya akan didapatkan dari IMU yang diintegrasikan dengan GPS. GPS digunakan untuk terus mengatur ulang IMU agar mampu mendapatkan posisi dengan akurasi tinggi. Posisi GPS telah diikatkan pada sebuah stasiun pengamat, dan stasiun ini memberikan faktor koreksi bagi unit GPS yang terpasang di wahana. Ilustrasi prinsip kerja LiDAR ditunjukkan pada Gambar 4.

Ilustrasi Prinsip Kerja LiDAR
Sumber: Center, 2012

Perbedaan waktu ketika sinar laser dipancarkan dan ketika sinar laser diterima oleh receiver optis dikalkulasi oleh perangkat lunak khusus untuk memproses dan mengkonversi data tersebut menjadi jarak terukur [6]:

dimana:

D     : jarak antara sensor dan objek yang diukur (m),

c      : kecepatan cahaya (3×108 m/s),

t       : waktu tempuh pulsa laser pada saat ditembakkan dari sensor dan diterima kembali oleh sensor (s).

WAHANA LIDAR

Pada perkembangan awalnya, LiDAR dibawa oleh wahana pesawat udara atau disebut dengan Airborne LiDAR. Namun karena biaya sewa pesawat cukup mahal, maka dikembangkanlah wahana pesawat tanpa awak yang dapat membawa sensor LiDAR. Pesawat tanpa awak ini dikenal juga sebagai Unmanned Aerial Vehicle (UAV). Dimana wahana yang dimaksud dapat terbang sesuai dengan perencanaan terbang (autopilot) dan dapat melakukan pengambilan data LiDAR. UAV ini memungkinkan untuk melakukan pelacakan posisi dan orientasi dari sensor yang diimplementasikan dalam sistem lokal atau koordinat global [2].

Ilustrasi Airborne LiDAR dan UAV LiDAR

OUTPUT LIDAR

Data yang dihasilkan dari akuisisi data LiDAR yaitu data dalam bentuk point cloud. Point cloud merupakan kumpulan titik yang mewakili bentuk atau fitur tiga dimensi (3D). Setiap titik memiliki koordinat X, Y, dan Z. Ketika terdapat banyak kumpulan point cloud yang disatukan, maka point cloud tersebut akan membentuk suatu permukaan atau objek dalam bentuk 3D.

Kerapatan titik (point cloud) yang bisa dihasilkan oleh LiDAR yaitu 1- 300 titik/?2, hal ini bergantung dari beberapa faktor, diantaranya adalah metode akuisi (tinggi terbang, jenis konfigurasi sensor, dan jenis permukaan), serta sudut pandang sensor ke permukaan bumi (field of view) [9]. Akurasi vertikal dari data LiDAR adalah kurang dari 20 cm dan untuk horizontalnya adalah 30-50 cm dalam range 15-24 cm dan horizontal 30-64 cm [6].Data point cloud dapat digunakan untuk membuat model tiga dimensi permukaan bumi (3D), seperti digital elevation model (DEM), digital surface model (DSM), dan normalized digital surface model (NDSM). Namun, sebelumnya point cloud harus diklasifikasikan menjadi ground point dan non-ground point terlebih dahulu. Ground point adalah point cloud yang membentuk permukaan bumi, tanpa objek-objek diatasnya seperti vegetasi, rumah, dll. Sedangkan non-ground point adalah point cloud yang membentuk objek-objek diatas permukaan bumi, seperti vegetasi, rumah, dll. Ground point ini akan digunakan untuk membuat DEM, sedangkan non-ground point akan digunakan untuk membentuk DSM dan NDSM. Selain itu, DEM yang dihasilkan pun dapat digunakan lagi untuk membuat garis kontur.

Hasil Klasifikasi Ground Point dan Non-Ground Point
Sumber: Hasil Olahan PT Kreasi Handal Selaras. 2019

Digital Elevation Model (DEM) merupakan penyajian persebaran titik diskrit yang merepresentasikan distribusi spatial elevation permukaan yang berubah-ubah dengan referensi datum tertentu [12]. DEM menyajikan permukaan bumi tanpa menampilkan fitur vegetasi, bangunan, dan struktur buatan manusia yang lainnya.

Digital Surface Model (DSM) adalah model permukaan bumi yang meluputi fitur alami maupun buatan manusia, misalnya gedung, vegetasi, dan pepohonan [3]. DSM juga merupakan model elevasi topografis permukaan bumi yang memberi batas acuan yang benar secara geometris. DSM menggambarkan puncak fitur yang terdapat di atas bare earth.

Hasil DEM dan DSM dari Akuisisi LiDAR
Sumber: Hasil Olahan PT Kreasi Handal Selaras. 2019

Normalized Digital Surface Model (NDSM) adalah penyajian model elevasi objek pada permukaan datar. Model ini diperoleh dari perbedaan antara DSM dan DEM. NDSM dihitung dengan cara mengurangkan DSM dengan DEM [8]. Penghitungan ini akan didapatkan tinggi objek yang ada di atas permukaan tanah.

Garis kontur adalah garis khayal pada peta yang meghubungkan titik-titik dengan ketinggian yang sama. Garis kontur disajikan di atas peta untuk memperlihatkan naik turunnya keadaan permukaan tanah, juga untuk memberikan informasi slope (kemiringan tanah), irisan profil memanjam permukaan tanah terhadap jalur proyek, dan perhitungan galian serta timbunan (cut and fill) permukaan tanah.

APLIKASI LIDAR

Teknologi LiDAR yang menghasilkan output dengan akurasi data yang cukup akurat, menjadikan teknologi ini mulai banyak digunakan. Berikut adalah aplikasi LiDAR dalam beberapa bidang:

  • Pemodelan Banjir

Dalam pemodelan banjir, LiDAR berperan dalam membentuk digital elevation model (DEM). DEM yang dihasilkan dari LiDAR memiliki kualitas data dan resolusi spasial yang lebih baik dibandingkan dengan citra satelit. DEM ini berfungsi untuk membentuk model geometri sungai yang akan digunakan pada tahapan simulasi banjir [4].

  •  Pemantauan Tanah Longsor

Pada pemantauan tanah longsor, pengambilan data LiDAR dilakukan secara berkala dalam selang waktu tertentu. Pergerakan tanah dapat dipantau dari perubahan data yang didapatkan. Pemantauan tanah longsor menggunakan LiDAR akan menghasilkan model tiga dimensi dari lereng yang diamati.

  • Pemetaan Kawasan Hutan

Sinar laser yang dipancarkan oleh LiDAR dapat menembus celah-celah kecil pada kanopi pohon. Hal ini menjadikan LiDAR dapat merekam data di bawah kanopi pohon. Sehingga, dengan menggunakan LiDAR dapat dihasilkan DEM pada kawasan hutan. DEM dalam pemetaan kawasan hutan digunakan untuk menentukan zonasi bahaya kebakaran hutan.

  • Survei Pertambangan

Pada survei pertambangan LiDAR digunakan untuk memantau kemiringan lereng, menghitung volum stock pile, dan melakukan cut and fill.

Jadi, sangat menarik bukan teknologi LiDAR ini? Menurut Anda, dapat diaplikasikan untuk apa lagi teknologi LiDAR ini?

DAFTAR REFERENSI

[1] Abidin, H. Z. 2000. Penentuan Posisi Dengan GPS dan Aplikasinya. Jakarta : Pradnya Paramita.

[2] Airborne LiDAR. https://serc.carleton.edu/details/images/83475.html, diakses pada tanggal 31 Oktober 2019.

[3] ASPRS, 2007, Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd Edition, edited by David F. Maune, Bethesdha, Maryland.

[4] Asriyah, Nur., Budi Harto, Agung., dan Wikantika, Ketut. 2017. Pemanfaatan Teknologi Light Detection and Ranging (LiDAR) Dalam Pemodelan Banjir Akibat Luapan Air Sungai, Bunga Rampai Forum Peneliti Muda Indonesia. Bandung : Istitut Teknologi Bandung.

[5] Burtch, Robert. 2001. LiDAR Principles and Applications. Big Rapids.

[6,1] Center, N. C. (2012). Lidar 101: An Introduction to Lidar Technology, Data, and Applications. Charleston: SC: NOAA Coastal Services Center.

[7,2] Eisenbeiß, H., Zurich, E. T. H., Eisenbeiß, H., & Zürich, E. T. H. (2009). UAV photogrammetry. Institute of Photogrammetry and Remote Sensing.

[8] Grigillo, D., Kosmatin Fras, M., dan Petrovič, D. 2011. Automatic Extraction and Building Change Detection from Digital Surface Model and Multispectral Orthophoto, Geodetski vestnik, 55(1), 28-45.

[9,3] Kandia, P. (2012). Pembentukan Model untuk Estimasi Kelapa Sawit Menggunakan Data Light Detection and Ranging (LIDAR). Bandung: Institut Teknologi Bandung.

[10] Lohani, Bharat dan Ghosh, Suddhasheel. 2017. Airborne LiDAR Technology: A Review of Data Collection and Processing Systems. Proceedings of the National Academy of Sciences. India.

[11] Lohani, B., 2010, Multiple return LiDAR, http://home.iitk.ac.in/~blohani/ (diakses pada tanggal 31 Oktober 2019).

[12] Meijerink, A. M. J., dkk., 1994, Introduction to The Use of Geographic Information Systems for Practical Hydrology, International Institute for Aerospace Survey and Earth Sciences (ITC). Enschede.

[13] Moskal, L. Monika. 2008. LiDAR Fundamentals: Part One, Workshop on Site-scale Application of LiDAR on Forest Lands in Washington, Center for Urban Holticulture. University of Washington.

[14] Pitch, Roll, and Yaw. https://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw, diakses pada tanggal 31 Oktober 2019.

[15] UAV LiDAR. http://www.uavexpertnews.com/2019/04/nextcore-releases-nextcore-rn-series/, diakses pada tanggal 31 Oktober 2019.